The nice thing about colleagues is that, sometimes, they give me a primer on their latest results. I would like to talk about a strange result by Dongsheng Zhao and Xiaoyong Xi, which, while accepted for publication, does not seem to be out yet. (Thanks to D. Zhao for letting me know about this!) I have already talked about models of topological spaces. Following earlier results by Zhao, Xi, and Erné, one can show that every T1 space has a bounded complete, and even algebraic, poset model, and that every T1 space has a (not bounded complete) dcpo model, but can we have both at the same time? In other words, does every T1 space have a bounded complete dcpo model? Answer (and explanations) in the full post…
-
Recent Posts
Recent Comments
- xiaodong.jia on Well-filtered dcpos
- jordan 11 legend blue on Bourbaki, Witt, and a theorem of Dito Pataraia’s
- air jordan 11 legend blue on Bourbaki, Witt, and a theorem of Dito Pataraia’s
- jordan legend 11s on Bourbaki, Witt, and a theorem of Dito Pataraia’s
- jordan 11 legend blue 2014 on Bourbaki, Witt, and a theorem of Dito Pataraia’s
Archives
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- July 2017
- June 2017
- April 2017
- February 2017
- January 2017
- October 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- January 2016
- December 2015
- October 2015
- September 2015
- July 2015
- June 2015
- May 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- September 2014
- July 2014
- June 2014
- May 2014
- March 2014
- January 2014
- December 2013
- November 2013
- October 2013
- July 2013
- June 2013
- April 2013
- February 2013
- October 2012
Meta