Introduction to Efficient and Secure Arithmetic Circuits

Arnaud TISSERAND

CNRS, Lab-STICC

Conférence rentrée informatique ENS Paris-Scalay. Sept. 2021

Course Language

Slides have been prepared in English.
Some words/remarks are also given in FR French in case of not immediate translation or specific feature.

Questions, comments and help requests are welcome in both French and English.

Licence

This document is licensed under a Creative Commons Attribution NonCommercial 4.0 International License.
https://creativecommons.org/licenses/by-nc/4.0/

All figures and tables not from the author are presented with their source.

Summary

Computer Arithmetic

Preliminaries on Digital Circuits

Addition \& Multiplication

Introduction to Physical Attacks

Protections at the Arithmetic Level

References

References to books, articles and links are given throughout and at the end of this document.

Computer Arithmetic

What is Computer Arithmetic? (Personal Definition)

Branch of computer engineering/science that deals with:

- representations of numbers: formats, coding and behavior for (subsets of) $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_{q}, \ldots$, fixed vs multiple precision;
- algorithms for operations: $\pm, \times, \div \sqrt{ }, \frac{1}{x}, \frac{1}{\sqrt{x}}, \frac{1}{\sqrt{x^{2}+y^{2}}}$, exp, log, sin, cos, mod, $\operatorname{gcd},(a+b) \bmod p$, conversions, \ldots;
- implementations in hardware or(/and) software;
- quality: error/accuracy, specific cases (div. by 0), reproducibility;
- speed: delay, latency, throughput;
- costs: silicon area, code/data memory, power/energy consumption;
- methods and tools: study, coding, validation, verification, porting, evaluation, ...;
- training of programmers and users;
- ?

Computer Arithmetic Overview

representations of numbers $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \simeq \mathbb{R}, \mathbb{F}_{\mathscr{Q}}$

Computer Arithmetic Overview

```
representations of numbers \(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \simeq \mathbb{R}, \mathbb{F}_{q}\)
```


algorithms

```
\pm, }\times,\div,\sqrt{q}{,},mo
, e
```

implementation
soft GPP $/$ SP,
ASIC, FPGA

Computer Arithmetic Overview

representations of numbers $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \simeq \mathbb{R}, \mathbb{F}_{q}$

implementation soft GPP/SP, ASIC, FPGA

Computer Arithmetic Overview

Computer Arithmetic Overview

Computer Arithmetic Overview

Computer Arithmetic Overview

speed, throughput, latency

Computer Arithmetic Overview

speed, throughput, latency

Computer Arithmetic Close Domains

- microelectronics for digital circuits;
- computer architecture for processor design (units, instructions, registers, interruptions, counters ...);
- programming languages and compilation;
- numerical computing and applied mathematics;
- formal proofs and verification methods;
- computer algebra ($\mathbb{F R}$ calcul formel);
- specific application domains such as signal and image processing, AI
- and probably other domains...

Computer Arithmetic in Software (Example SW1)

The following Python code:

```
a, b = 1, 9
c = a + b
print(c, type(c))
from math import *
x = pi + 1.0
print(x, type(x))
print([ sin(pi/n) for n in [4, 6, 12] ])
```

produces (using Python 3.7):
10 <class 'int'>
4.141592653589793 <class 'float'>
[0.7071067811865475, $0.49999999999999994,0.25881904510252074$

Warning : do not perform large computations using "raw" Python, use NumPy standard library (see also Numba or PyPy)!

Computer Arithmetic in Software (Example SW2)

The following C code:

```
#include <stdio.h>
#include <math.h>
int main() {
    double n = 4.0;
    double x = M_PI;
    double y = sin(x/n);
    printf("y = %f\n", y);
    return 0;
}
```

compiled (gcc 8.3) using:
gcc -lm example_sin.c
produces:
$\mathrm{y}=0.707107$

Computer Arithmetic in Software (Example SW3)

The following Python code:

```
a = 1.0
b = 12.345e50
c = 9.8765e-40
v = [a, -a, b, -b, c, -c]
print(sum(v))
from itertools import permutations
print(sorted(set( [ sum(e) for e in permutations(v) ] )))
produces (using Python 3.7):
0.0
[-1.0, -9.8765e-40, 0.0, 9.8765e-40, 1.0]
```

Warning : associativity does not (necessarily) hold for floating-point arithmetic! See for instance: David Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. 23, March 1991, DOI: https://doi.org/10.1145/103162.103163

Computer Arithmetic in Hardware (Example HW1)

Overview of one core in an Intel Xeon processor, source: https:
//www.hc32.hotchips.org/assets/program/conference/day1/ HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf

Link to other examples: https://en.wikichip.org/wiki/WikiChip

Computer Arithmetic in Hardware (Example HW2)

Source: NVIDIA TURING GPU ARCHITECTURE white paper (WP-09183-001_v01)

See also: https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/

Preliminaries on Digital Circuits

Logic Values: Representation

The logic values $\{0,1\}$ are represented using voltages:

- $0 \Longleftrightarrow$ reference voltage or ground ($V_{S S}$, m 1 mor)
- $1 \Longleftrightarrow$ supply voltage ($V_{D D}>0$ or \uparrow)

Due to the noise in the circuit (from many sources), the logic values must be represented using voltage intervals (noise margins): digital vs. analog

CMOS Logic

CMOS = complementary MOS
N and P transistors are only used for passing strong signals

The simplest gate: only 2 transistors (1 N and 1 P)

A	Y
0	1
1	0

circuit:

behavior:

Logic Gate: NAND2 (2-input not-and)

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

Logic Gate: NAND3 (3-input NAND)

A	B	C	Y
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

The number of transistors in series is limited (3 to 5)

Memory Elements

There are many types of memory elements. Here, we will only focus on standard flip-flops

CLK	D	Q(t+1)	QN(t+1)
1	X	$Q(t)$	$Q N(t)$
0	X	$Q(t)$	$Q N(t)$
\uparrow	0	0	1
\uparrow	1	1	0

Remark:
\uparrow is the rising clock edge

Setup, Hold and Propagation Delays

- setup delay ($\mathrm{t}_{\text {setup }}$): data should be held steady before clock edge
- hold delay ($\mathrm{t}_{\text {hold }}$): data should be held steady after clock edge
- propagation delay ($\mathrm{t}_{\text {propag }}$): propagation time from D to Q

Fanout (ER sortance)

The gate delay (change output state) depends on the output load. Fanout measures this load as the number of inputs of gate connected to the output (normalized w.r.t. an inverter)

Power Consumption: Basic Definitions

Instantaneous power:

$$
P(t)=i_{D D}(t) V_{D D}
$$

Energy over some time interval T:

$$
E=\int_{0}^{T} i_{D D}(t) V_{D D} d t
$$

Average power over interval T:

$$
P_{a v g}=\frac{E}{T}=\frac{1}{T} \int_{0}^{T} i_{D D}(t) V_{D D} d t
$$

Units:

- current A
- voltage V
- power W
- energy J or Wh

Power Consumption: Components

Power dissipation in CMOS circuits comes from 2 main components:

- static dissipation:
- sub-threshold conduction through OFF transistors
- leakage current through P-N junctions
- tunneling current through gate oxide
- ...
- dynamic dissipation:
- charging and discharging of load capacitances (useful + parasitic)
- short-circuit current

$$
P_{\text {total }}=P_{\text {static }}+P_{\text {dynamic }}
$$

Charging and Discharging Load Capacitances

There are capacitances everywhere in the circuit: transistor gate, routing, parasitics. . .

Solutions:

- design small circuits (small transistor, short wires, technology shrinking)
- reduce the activity (algorithms, data coding, sleep mode)
- reduce $V_{D D}$ (without lowering speed)

Simple Power Consumption Model

Average dynamic power dissipation (no leakage, no short circuit):

$$
P=\alpha \times C \times f \times V_{D D}^{2}
$$

where

- α is the activity factor
- C is the average switched capacitance (at each cycle)
- f is the circuit frequency
- $V_{D D}$ is the supply voltage

Remark: the gate delay is $d=\gamma \times \frac{C \times V_{D D}}{\left(V_{D D}-V_{T}\right)^{2}} \approx \frac{1}{V_{D D}}$

- gate and/or input reordering (reduce glitching power):

- use complex gates (reduce internal capacitances and area):

Addition \& Multiplication

Positional Number System(s)

$$
X=\sum_{i=-m}^{n-1} x_{i} \beta^{i}=\left(x_{n-1} x_{n-2} \cdots x_{1} x_{0} \cdot x_{-1} x_{-2} \cdots x_{-m}\right)
$$

- radix β (usually a power of 2)
- digits $x_{i}(\in \mathbb{N})$ in the digit set \mathcal{D}
- rank or position i, weight β^{i}
- n integer digits, m fractional digits

Examples:

- $\beta=10, \mathcal{D}=\{0,1,2,3,4,5,6,7,8,9\}$
- $\beta=2, \mathcal{D}=\{0,1\}$

Positional Number System(s)

$$
X=\sum_{i=-m}^{n-1} x_{i} \beta^{i}=\left(x_{n-1} x_{n-2} \cdots x_{1} x_{0} \cdot x_{-1} x_{-2} \cdots x_{-m}\right)
$$

- radix β (usually a power of 2)
- digits $x_{i}(\in \mathbb{N})$ in the digit set \mathcal{D}
- rank or position i, weight β^{i}
- n integer digits, m fractional digits

Examples:

- $\beta=10, \mathcal{D}=\{0,1,2,3,4,5,6,7,8,9\}$
- $\beta=2, \mathcal{D}=\{0,1\}$
- carry save: $\beta=2, \mathcal{D}_{\mathrm{cs}}=\{0,1,2\}$
- borrow save: $\beta=2, \mathcal{D}_{\mathrm{bs}}=\{-1,0,1\}$

Positional Number System(s)

$$
X=\sum_{i=-m}^{n-1} x_{i} \beta^{i}=\left(x_{n-1} x_{n-2} \cdots x_{1} x_{0} \cdot x_{-1} x_{-2} \cdots x_{-m}\right)
$$

- radix β (usually a power of 2)
- digits $x_{i}(\in \mathbb{N})$ in the digit set \mathcal{D}
- rank or position i, weight β^{i}
- n integer digits, m fractional digits

Examples:

- $\beta=10, \mathcal{D}=\{0,1,2,3,4,5,6,7,8,9\}$
- $\beta=2, \mathcal{D}=\{0,1\}$
- carry save: $\beta=2, \mathcal{D}_{\mathrm{cs}}=\{0,1,2\}$
- borrow save: $\beta=2, \mathcal{D}_{\mathrm{bs}}=\{-1,0,1\}$
- signed digits: $\beta>2, \mathcal{D}_{\text {sd }, \alpha, \beta}=\{-\alpha, \ldots, \alpha\}$ with $2 \alpha+1 \geq \beta$

Positional Number System(s)

$$
X=\sum_{i=-m}^{n-1} x_{i} \beta^{i}=\left(x_{n-1} x_{n-2} \cdots x_{1} x_{0} \cdot x_{-1} x_{-2} \cdots x_{-m}\right)
$$

- radix β (usually a power of 2)
- digits $x_{i}(\in \mathbb{N})$ in the digit set \mathcal{D}
- rank or position i, weight β^{i}
- n integer digits, m fractional digits

Examples:

- $\beta=10, \mathcal{D}=\{0,1,2,3,4,5,6,7,8,9\}$
- $\beta=2, \mathcal{D}=\{0,1\}$
- carry save: $\beta=2, \mathcal{D}_{\text {cs }}=\{0,1,2\}$
- borrow save: $\beta=2, \mathcal{D}_{\text {bs }}=\{-1,0,1\}$
- signed digits: $\beta>2, \mathcal{D}_{\text {sd }, \alpha, \beta}=\{-\alpha, \ldots, \alpha\}$ with $2 \alpha+1 \geq \beta$
- theoretical systems: $\beta=\frac{1+\sqrt{5}}{2}, \beta=1+i \ldots$

Radix-2 Signed Integers

- sign and magnitude (absolute value)

$$
A=\left(s_{a} a_{n-2} \ldots a_{1} a_{0}\right)=(-1)^{s_{a}} \times \sum_{i=0}^{n-2} a_{i} 2^{i}
$$

- 2's complement

$$
A=\left(a_{n-1} a_{n-2} \ldots a_{1} a_{0}\right)=-a_{n-1} 2^{n-1}+\sum_{i=0}^{n-2} a_{i} 2^{i}
$$

- biased (usually $B=2^{n-1}-1$)

$$
A=A_{\text {math }}+B
$$

Signed Integers

integer	representations		
	sign/magnitude	2's complement	biased $(\mathrm{B}=7)$
	-	1000	
-7	1111	1001	0000
6	1110	1010	0001
-5	1101	1011	0010
-4	1100	1100	0011
-3	1011	1101	0100
-2	1010	1110	0101
-1	1001	1111	0110
	0000	0000	0111
1	0001	0001	1000
2	0010	0010	1001
3	0011	0011	1010
4	0100	0100	1011
5	0101	0101	1100
6	0110	0110	1101
7	0111	0111	1110
8			

Fixed-Point Representations

Widely used in DSPs and digital integrated circuits for higher speed, lower silicon area and power consumption compared to floating point

Typical fixed-point formats: 16, 24, 32 and 48 bits

Floating-Point Representation(s)

Radix- β floating-point representation of x :

- sign s_{x}, 1-bit encoding: $0 \Rightarrow x>0$ and $1 \Rightarrow x<0$
- exponent $e_{x} \in \mathbb{N}$ on k digits and $e_{\min } \leq e_{x} \leq e_{\max }$
- mantissa m_{x} on $n+1$ digits
- encoding:

$$
\begin{aligned}
x & =(-1)^{s_{x}} \times m_{x} \times \beta^{e_{x}} \\
m_{x} & =x_{0} \cdot x_{1} x_{2} x_{3} \cdots x_{n} \\
x_{i} & \in\{0,1, \ldots, \beta-1\}
\end{aligned}
$$

For accuracy purpose, the mantissa must be normalized $\left(x_{0} \neq 0\right)$
Then $m_{x} \in[1, \beta[$ and a specific encoding is required for the number 0

IEEE-754: basic formats

Radix $\beta=2$, the first bit of the normalized mantissa is always a " 1 " (non-stored implicit bit)

format	number of bits			
	total	sign	exponent	mantissa
double precision	64	1	11	$52+1$
simple precision	32	1	8	$23+1$

double precision

IEEE-754: Exponent and Special Values

format	$\begin{gathered} \text { size } \\ k \end{gathered}$	bias b		unbiased		biased	
				$e_{\text {min }}$	$e_{\text {max }}$	$e_{\text {min }}$	$e_{\text {max }}$
SP	8	127	$\left(=2^{8-1}-1\right)$	-126	127	1	254
DP	11	1023	$\left(=2^{11-1}-1\right)$	-1022	1023	1	2046

| -0 | 1 | 00000000 | 00000000000000000000000 |
| :---: | :--- | :--- | :--- | :--- |
| +0 | 0 | 0000000 | 00000000000000000000000 |
| $-\infty$ | 1 | 11111111 | 00000000000000000000000 |
| $+\infty$ | 0 | 11111111 | 00000000000000000000000 |
| NaN | 0 | 11111111 | 00000000000000000000001 (for instance) |

Not a Number (NaN) is the result of invalid operations such as $0 / 0, \sqrt{-1}$ or $0 \times \infty$

Basic Cells for Addition

Useful circuit element in computer arithmetic: counter
A (m, k)-counter is a cell that counts the number of 1 on its m inputs (result expressed as a k-bit integer)

$$
\sum_{i=0}^{m-1} a_{i}=\sum_{j=0}^{k-1} s_{j} 2^{j}
$$

Standard counters:

- half-adder or HA is a $(2,2)$-counter
- full-adder or FA is a $(3,2)$-counter

FA Cell

Arithmetic equation:

$$
2 c+s=a+b+d
$$

Logic equation:

$$
\begin{aligned}
& s=a \oplus b \oplus d \\
& c=a b+a d+b d
\end{aligned}
$$

Articles about FA in IEEE Journals

There many implementations of the FA cell

Carry Ripple Adder (CRA)

Very simple architecture: n FA cells connected in series

	complexity
delay	$O(n)$
area	$O(n)$

Warning: Sometimes a CRA is also called Carry Propagate Adder (CPA), but CPA also means a non-redundant adder (that propagates)

Useless Activity in a Carry Ripple Adder

Very simple architecture:
n FA cells connected in series

Theoretical models (equiprobable and uniform distribution of inputs):

- worst case $n^{2} / 2$ transitions
- average $3 n / 2$ transitions and only $n / 2$ useful

Carry-Select Adder

Idea: computation of the higher half part for the 2 possible input carries (0 and 1) and selection when the output carry from lower half part is known

Recursive version $\longrightarrow O(\log n)$ delay but there is a fanout problem...

Carry Lookahead Adder

Idea: compute all carries as fast as possible (instead of propagating them)
At rank i, the input carry c_{i} is 1 in the following cases:

- rank $i-1$ generates a carry
$\hookrightarrow g_{i-1}=1$
- rank $i-1$ propagates a carry generated at rank $i-2$
$\hookrightarrow p_{i-1}=g_{i-2}=1$
- ranks $i-1$ and $i-2$ propagate a carry generated at rank $i-3$
$\hookrightarrow p_{i-1}=p_{i-2}=g_{i-3}=1$
- ranks $i-1$ to 0 propagate the adder input carry c_{0} (set to 1)
$\hookrightarrow p_{i-1}=p_{i-2}=\ldots=p_{1}=p_{0}=c_{0}=1$

All carries can be computed using the relation $\left(c_{i}=g_{i-1}+c_{i-1} p_{i-1}\right)$:

$$
c_{i}=g_{i-1}+p_{i-1} g_{i-2}+p_{i-1} p_{i-2} g_{i-3}+\ldots+p_{i-1} \cdots p_{1} g_{0}+p_{i-1} \cdots p_{0} c_{0}
$$

CLA architecture: parallel evaluation of

- $\left(g_{i}, p_{i}\right)$ for all i
- carries c_{i} for all i using the above equation
- sums using $s_{i}=a_{i} \oplus b_{i} \oplus c_{i}=p_{i} \oplus c_{i}$

Carry Lookahead Adder: 4-Bit Example

$$
\begin{aligned}
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0} \\
& c_{3}=g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0} \\
& c_{4}=g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0}+p_{3} p_{2} p_{1} p_{0} c_{0}
\end{aligned}
$$

Parallel-Prefix Problems

The n outputs $\left(y_{n-1}, y_{n-2}, \cdots, y_{0}\right)$ are computed using the n inputs $\left(x_{n-1}\right.$, x_{n-2}, \cdots, x_{0}) and the associative operator \square :

$$
\begin{aligned}
y_{0} & =x_{0} \\
y_{1} & =x_{1} \square x_{0} \\
y_{2} & =x_{2} \square x_{1} \square x_{0} \\
& \vdots \\
y_{n-1} & =x_{n-1} \square x_{n-2} \square \cdots \square x_{1} \square x_{0}
\end{aligned}
$$

Parallel-Prefix Addition: Standard Architectures

Redundant or Constant Time Adders

To speed-up the addition, one solution consists in "saving" the carries and using them (this makes sense only in case of multiple additions)

In 1961, Avizienis suggested to represent numbers in radix β with digits in $\{-\alpha,-\alpha+1, \ldots, 0, \ldots, \alpha-1, \alpha\}$ instead of $\{0,1,2, \ldots, \beta-1\}$ with $\alpha \leq \beta-1$

Using this representation, if $2 \alpha+1>\beta$ some numbers have several possible representation at the bit level. For instance, the value 2345 (in the standard representation) can be represented in radix 10 with digits in $\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}$ by the values $2345,235(-5)$ or $24(-5)(-5)$

Such a representation is said redundant
In a redundant number system there is constant-time addition algorithm (without carry propagation) where all computations are done in parallel

Addition

Q: How can we speed up addition?

Addition

Q: How can we speed up addition?
R: Save the carries!

Addition

Q: How can we speed up addition?
R: Save the carries!

The computation time does not depend on n

Addition using the carry-save representation

Q: How can we speed up addition?
R: Save the carries!

The computation time does not depend on n

Addition using the carry-save representation

Q: How can we speed up addition?
R : Save the carries!

$$
\begin{aligned}
& X+Y+Z=S+R=\sum_{i=0}^{n}\left(s_{i}+r_{i}\right) 2^{i} \\
& =W=\sum_{i=0}^{n} w_{i} 2^{i} \text { avec } w_{i}=s_{i}+r_{i} \in\{0,1,2\} \\
& =\left(\begin{array}{l|l|l|l|l}
w_{n} w_{n-1} \ldots w_{1} w_{0}
\end{array}\right)_{\mathrm{cs}}=\left(\begin{array}{|c|c|c|c|c|c|c|c}
s_{n} & s_{n-1} & s_{1} & s_{0} \\
r_{n} & r_{n-1} \\
r_{1} & r_{0} \\
\hline
\end{array}\right)_{\mathrm{cs}}
\end{aligned}
$$

The computation time does not depend on n
$T(n)=O(1)$

Addition of 2 Carry-Save Numbers

Carry-Save Trees

Example with 3 inputs: A, B and C

Carry-save reduction tree: $n(h)$ non-redundant inputs can be reduced by a h-level carry-save tree where $n(h)=\lfloor 3 n(h-1) / 2\rfloor$ and $n(0)=2$

h	1	2	3	4	5	6	7	8	9	10	11
$n(h)$	3	4	6	9	13	19	28	42	63	94	141

Shift-And-Add Multiplication

The product $P=A \times B$ can be performed using additions and shifts with the following (parallel-serial) algorithm:

$$
\begin{aligned}
& P \longleftarrow 0 \\
& \text { for } i \text { from } 0 \text { to } n-1 \text { do } \\
& P \longleftarrow P+a_{i} B 2^{i}
\end{aligned}
$$

Remark: This algorithm requires a shifter operator (variable shift amount) Simplification (constant shift):

Operation on line 4 is virtual

Shift-And-Add Multiplication: Implementation

	complexity
delay	$O(n)$
area	$O(n)$

Fast Multipliers

1. partial products generation $a_{i} b_{j}$ (with or without recoding) \hookrightarrow delay in $O(1)$ (fanout a_{i}, b_{j} $O(\log n))$
2. sum of the partial products using a carry-save reduction tree \hookrightarrow delay in $O(\log n)$
3. assimilation of the carries using a fast adder
\hookrightarrow delay in $O(\log n)$

Multiplication delay $O(\log n)$, area $O\left(n^{2}\right)$

Power Consumption in Fast Multipliers

- 30% to 70% of redundant transitions (useless)
- place and route steps based on the internal arrival time
- add a pipeline stage

MAC and FMA

MAC: multiply and accumulate $P(t)=A \times B+P(t-1)$
A, B are n-bit values and P a m-bit with $m \gg n$ (e.g.,
$16 \times 16+40 \longrightarrow 40$ in some DSPs)
FMA: fused multiply and add $P=A \times B+C$ where A, B, C and P can be stored in different registers

Squarer

Multiplication by Constants (1/2)

Problem: substitute a complete multiplier by an optimized sequence of shifts and additions and/or subtractions
Example: $p=111463 \times x$

algo.	$p=111463 \times x=$	\#op.
direct	$(x \ll 16)+(x \ll 15)+(x \ll 13)+(x \ll 12)+(x \ll 9)$	$10 \pm$
	$+(x \ll 8)+(x \ll 6)+(x \ll 5)+(x \ll 2)+(x \ll 1)+x$	
CSD	$(x \ll 17)-(x \ll 14)-(x \ll 12)+(x \ll 10)$	$7 \pm$
	$-(x \ll 7)-(x \ll 5)+(x \ll 3)-x$	$5 \pm$
Bernstein	$\left(\left(\left(t_{2} \ll 2\right)+x\right) \ll 3\right)-x$	
	where	
	$t_{1}=(((x \ll 3)-x) \ll 2)-x$	$4 \pm$
	$t_{2}=t_{1} \ll 7+t_{1}$	
Our	$\left(t_{2} \ll 12\right)+\left(t_{2} \ll 5\right)+t_{1}$	
	where	
	$t_{1}=(x \ll 3)-x$	$t_{2}=\left(t_{1} \ll 2\right)-x$

CSD: canonical signed digit, $111463=11011001101100111_{2}=100 \overline{1} 0 \overline{1} 0100 \overline{1} 0 \overline{1} 0100 \overline{1}_{2}$

Multiplication by Constants (2/2)

FIR (1,5,5,1)

Power savings: 30 up to 60%

operator	init.	$[1]$	$[2]$	our
DCT 8b	300	94	73	56
DCT 12b	368	100	84	70
DCT 16b	521	129	114	89
DCT 24b	789	212	-	119

Power savings: 10\%

operator	init.	$[1]$	$[2]$	our
8×8 Had.	56	24	-	24
$(16,11)$ R.-M.	61	43	31	31
$(15,7)$ BCH	72	48	47	44
$(24,12,8)$ Golay	76	-	47	45

Power savings: up to 40%

operator	init.	[22]	our
8 bits	35	32	24
16 bits	72	70	46

Parks-McClellan filter

$$
x_{x[t]}^{\longrightarrow \times 4) \rightarrow+\square}
$$

$$
\stackrel{\mathrm{xlt]}}{\square}
$$

A

Example: \sqrt{x} over $[1,2]$ and $\mu \leq 8 \mathrm{sb}$

Selection of coefficients leading to sparse recodings
$p^{*}=1.00076383+0.48388463 x-0.071198745 x^{2}$
$p=1+(0.10000 \overline{1})_{2} x-(0.0001001)_{2} x^{2}$
replace \times by a small number of \pm

solution	area	period	\#cycles	latency	power
wo. tools	1.00	1.00	2	1.00	1.00
w. tools	0.59	0.97	1	0.48	0.45

Modular Exponentiation for RSA

Computation of operations such as : $a^{b} \bmod n$

$$
a^{b}=\underbrace{a \times a \times a \times a \times \ldots \times a \times a \times a}_{a \text { appears } b \text { times }}
$$

Order of magnitude of exponents: $2^{\text {size of exponent }} \rightsquigarrow 2^{2048} \ldots 2^{4096}$
Fast exponentiation principle:

$$
\begin{aligned}
a^{b} & =\left(a^{2}\right)^{\frac{b}{2}} & & \text { when } b \text { is even } \\
& =a \times\left(a^{2}\right)^{\frac{b-1}{2}} & & \text { when } b \text { is odd }
\end{aligned}
$$

Least significant bit of the exponent: bit $=0 \rightsquigarrow$ even and bit $=1 \rightsquigarrow$ odd

Square and Multiply Algorithm

```
input: a, b, n where b= ( bt-1 bt-2 \ldots. b b b b ) < 
output: ab}\operatorname{mod}
r=1
for i from 0 to t-1 do
    if }\mp@subsup{b}{i}{}=1\mathrm{ then
        r=r\cdota mod}
    endif
    a= a}\mp@code{modn
    endfor
    return r
```

This is the right to left version (there exists a left to right one)

Elliptic Curve Cryptography in 1 Slide. . .

Elliptic Curve Cryptography in 1 Slide. . .

Elliptic Curve Cryptography in 1 Slide. . .

Elliptic Curve Cryptography in 1 Slide. . .

encryption

$$
E: y^{2}=x^{3}+4 x+20 \text { over } \mathbb{F}_{1009}
$$

$$
\text { points: } \mathbf{P}, \mathbf{Q}=(x, y) \text { or }(x, y, z) \text { or } \ldots
$$

$$
\text { coordinates: } x, y, z \in \mathbb{F}_{q}
$$

$$
\mathbb{F}_{p}, \mathbb{F}_{2^{m}, t}: 200-600 \text { bits }
$$

$$
k=\left(k_{t-1} k_{t-2} \ldots k_{1} k_{0}\right)_{2} \in \mathbb{N}
$$

Scalar multiplication operation

$$
\text { for } i \text { from } 0 \text { to } t-1 \text { do }
$$

$$
\text { if } k_{i}=1 \text { then } \mathbf{Q}=\operatorname{ADD}(\mathbf{P}, \mathbf{Q})
$$

$$
\mathbf{P}=\operatorname{DBL}(\mathbf{P})
$$

Elliptic Curve Cryptography in 1 Slide. . .

encryption

$$
E: y^{2}=x^{3}+4 x+20 \text { over } \mathbb{F}_{1009}
$$

$$
\begin{aligned}
& \text { points: } \mathbf{P}, \mathbf{Q}=(x, y) \text { or }(x, y, z) \text { or } \ldots \\
& \text { coordinates: } x, y, z \in \mathbb{F}_{q} \\
& \mathbb{F}_{p}, \mathbb{F}_{2^{m}}, t: 200-600 \text { bits } \\
& k=\left(k_{t-1} k_{t-2} \ldots k_{1} k_{0}\right)_{2} \in \mathbb{N} \\
& \text { Scalar multiplication operation } \\
& \text { for i from } 0 \text { to } t-1 \text { do } \\
& \text { if } k_{i}=1 \text { then } \mathbf{Q}=\operatorname{ADD}(\mathbf{P}, \mathbf{Q}) \\
& \mathbf{P}=\operatorname{DBL}(\mathbf{P})
\end{aligned}
$$

Point addition/doubling operations

sequence of finite field operations DBL: $v_{1}=z_{1}^{2}, v_{2}=x_{1}-v_{1}, \ldots$
ADD: $w_{1}=z_{1}^{2}, w_{2}=z_{1} \times w_{1}$,

Elliptic Curve Cryptography in 1 Slide. . .

protocol level

encryption

$$
E: y^{2}=x^{3}+4 x+20 \text { over } \mathbb{F}_{1009}
$$

$$
\text { points: } \mathbf{P}, \mathbf{Q}=(x, y) \text { or }(x, y, z) \text { or } \ldots
$$

coordinates: $x, y, z \in \mathbb{F}_{q}$

$$
\begin{aligned}
& \mathbb{F}_{p}, \mathbb{F}_{2^{m}, t}: 200-600 \text { bits } \\
& k=\left(k_{t-1} k_{t-2} \ldots k_{1} k_{0}\right)_{2} \in \mathbb{N}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Scalar multiplication operation } \\
& \hline \text { for i from } 0 \text { to } t-1 \mathrm{do} \\
& \text { if } k_{i}=1 \text { then } \mathbf{Q}=\operatorname{ADD}(\mathbf{P}, \mathbf{Q}) \\
& \mathbf{P}=\operatorname{DBL}(\mathbf{P}) \\
& \hline
\end{aligned}
$$

Point addition/doubling operations

sequence of finite field operations
DBL: $v_{1}=z_{1}^{2}, v_{2}=x_{1}-v_{1}, \ldots$
ADD: $w_{1}=z_{1}^{2}, w_{2}=z_{1} \times w_{1}$,

\mathbb{F}_{p} or $\mathbb{F}_{2^{m}}$ operations
 operation modulo large prime $\left(\mathbb{F}_{p}\right)$ or irreducible polynomial $\left(\mathbb{F}_{2^{m}}\right)$

Introduction to Physical Attacks

Attacks

Attacks

Attacks

$\mathrm{EMR}=$ Electromagnetic radiation

Attacks

$\mathrm{EMR}=$ Electromagnetic radiation

Attacks

$\mathrm{EMR}=$ Electromagnetic radiation

Side Channel Attacks (SCAs) (1/2)

Attack: attempt to find, without any knowledge about the secret:

- the message (or parts of the message)
- informations on the message
- the secret (or parts of the secret)

Side Channel Attacks (SCAs) (1/2)

Attack: attempt to find, without any knowledge about the secret:

- the message (or parts of the message)
- informations on the message
- the secret (or parts of the secret)
"Old style" side channel attacks:

Side Channel Attacks (2/2)

General principle: measure external parameter(s) on running device in order to deduce internal informations

Side Channel Attacks (2/2)

General principle: measure external parameter(s) on running device in order to deduce internal informations

What Should be Measured?

Answer: everything that can "enter" and/or "get out" in/from the device

- power consumption
- electromagnetic radiation
- temperature
- sound
- computation time
- number of cache misses
- number and type of error messages

The measured parameters may provide informations on:

- global behavior (temperature, power, sound...)
- local behavior (EMR, \# cache misses...)

Power Consumption Analysis

General principle:

1. measure the current $i(t)$ in the cryptosystem
2. use those measurements to "deduce" secret informations

Source: [8] Kocher, Jaffe and Jun. Differential Power Analysis, Crypto99

- algorithm \longrightarrow decomposition into steps
- detect loops
- constant time for the loop iterations
- non-constant time for the loop iterations

Source: [8] Kocher, Jaffe and Jun. Differential Power Analysis, Crypto99

Differences \& External Signature

An algorithm

$$
\begin{aligned}
& r=c_{0} \\
& \text { for } i \text { from } 1 \text { to } n \text { do } \\
& \text { if } a_{i}=0 \text { then } \\
& r=r+c_{1} \\
& \text { else } \\
& \quad r=r \times c_{2}
\end{aligned}
$$

Differences \& External Signature

An algorithm has a current signature

$$
\begin{aligned}
& r=c_{0} \\
& \text { for } i \text { from } 1 \text { to } n \text { do } \\
& \text { if } a_{i}=0 \text { then } \\
& r=r+c_{1} \\
& \text { else } \\
& \quad r=r \times c_{2}
\end{aligned}
$$

Differences \& External Signature

An algorithm has a current signature and a time signature:

$$
\begin{aligned}
& r=c_{0} \\
& \text { for } i \text { from } 1 \text { to } n \text { do } \\
& \text { if } a_{i}=0 \text { then } \\
& \quad r=r+c_{1} \\
& \text { else } \\
& \quad r=r \times c_{2}
\end{aligned}
$$

Simple Power Analysis (SPA)

Source: [8]

Simple Power Analysis (SPA)

Source: [8]

SPA in Practice

General principle:

```
algorithm
```


SPA in Practice

General principle:

SPA in Practice

General principle:

SPA in Practice

General principle:

SPA in Practice

General principle:

Methods: interpretation of the differences in

- control signals
- computation time
- operand values

Limits of the SPA

Example of behavior difference: (activity into a register)

Limits of the SPA

Example of behavior difference: (activity into a register)

Limits of the SPA

Example of behavior difference: (activity into a register)

Important: a small difference may be evaluated has a noise during the measurement \rightarrow traces cannot be distinguished

Question: what can be done when differences are too small?

Limits of the SPA

Example of behavior difference: (activity into a register)

Important: a small difference may be evaluated has a noise during the measurement \rightarrow traces cannot be distinguished

Question: what can be done when differences are too small?

Answer: use statistics over several traces

Differential Power Analysis (DPA)

```
cryptosystem
```


Differential Power Analysis (DPA)

Differential Power Analysis (DPA) Example

Template Attack

```
cryptosystem
```


Template Attack

Template Attack

Template Attack

Electromagnetic Radiation Analysis (1/2)

General principle: use a probe to measure the EMR

EMR measurement:

Electromagnetic Radiation Analysis (1/2)

General principle: use a probe to measure the EMR

EMR measurement:

- global EMR with a large probe

Electromagnetic Radiation Analysis (1/2)

General principle: use a probe to measure the EMR

EMR measurement:

- global EMR with a large probe
- local EMR with a micro-probe

Electromagnetic Radiation Analysis (2/2)

EMR analysis methods:

- simple electromagnetic analysis: SEMA
- differential electromagnetic analysis: DEMA

Local EMR analysis may be used to determine internal architecture details, and then select weak parts of the circuit for the attack
\rightarrow X-Y table

Side Channel Attack on ECC

Side Channel Attack on ECC

Scalar multiplication operation
for i from 0 to $t-1$ do
if $k_{i}=1$ then $\mathbf{Q}=\operatorname{ADD}(\mathbf{P}, \mathbf{Q})$
$\mathbf{P}=\operatorname{DBL}(\mathbf{P})$

Side Channel Attack on ECC

Scalar multiplication operation
for i from 0 to $t-1$ do
if $k_{i}=1$ then $\mathbf{Q}=\operatorname{ADD}(\mathbf{P}, \mathbf{Q})$
$\mathbf{P}=\operatorname{DBL}(\mathbf{P})$

Side Channel Attack on ECC

\section*{| 응 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |}

encryption

Scalar multiplication operation
for i from 0 to $t-1$ do
if $k_{i}=1$ then $\mathbf{Q}=\operatorname{ADD}(\mathbf{P}, \mathbf{Q})$
$\mathbf{P}=\operatorname{DBL}(\mathbf{P})$

Side Channel Attack on ECC

\section*{| 잉 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |}

encryption

- simple power analysis (\& variants)

Side Channel Attack on ECC

protocol level

encryption

$$
\begin{array}{|l}
\hline \text { Scalar multiplication operation } \\
\hline \text { for } i \text { from } 0 \text { to } t-1 \text { do } \\
\text { if } k_{i}=1 \text { then } \mathbf{Q}=\operatorname{ADD}(\mathbf{P}, \mathbf{Q}) \\
\mathbf{P}=\operatorname{DBL}(\mathbf{P})
\end{array}
$$

- simple power analysis (\& variants)
- differential power analysis (\& variants)
- horizontal/vertical/templates/... attacks

Protections at the Arithmetic Level

Countermeasure

Principles for preventing attacks:

- embed additional protection blocks
- modify the original circuit into a secured version
- application levels: circuit, architecture, algorithm, protocol...

Countermeasure

Principles for preventing attacks:

- embed additional protection blocks
- modify the original circuit into a secured version
- application levels: circuit, architecture, algorithm, protocol...

Countermeasures:

- electrical shielding
- detectors, estimators, decoupling
- use uniform computation durations and power consumption
- use detection/correction codes (for fault injection attacks)
- provide a random behavior (algorithms, representation, operations...)
- add noise (e.g. masking, useless instructions/computations)
- circuit reconfiguration (algorithms, block location, representation of values...)

Low-Level Coding and Circuit Activity

Assumptions:

- b is a bit (i.e. $b \in\{0,1\}$, logical or mathematical value)
- electrical states for a wire \quad : $V_{D D}$ (logical 1) or GND (logical 0)

Low-Level Coding and Circuit Activity

Assumptions:

- b is a bit (i.e. $b \in\{0,1\}$, logical or mathematical value)
- electrical states for a wire $: V_{D D}($ logical 1$)$ or GND (logical 0)

Low-level codings of a bit:

	$b=0$	$b=1$
standard	GND	$-V_{D D}$

Low-Level Coding and Circuit Activity

Assumptions:

- b is a bit (i.e. $b \in\{0,1\}$, logical or mathematical value)
- electrical states for a wire $\quad V_{D D}($ logical 1$)$ or GND (logical 0$)$

Low-level codings of a bit:

	$b=0$	$b=1$
standard	$G G D$	$V_{D D}$
dual rail	$\left.\begin{array}{r}r_{0}=V_{D D} \\ r_{1}=G N D\end{array}\right](1,0)_{\mathrm{DR}}$	$\left.\begin{array}{r}r_{0}=\mathrm{GND} \\ r_{1}=V_{D D}\end{array}\right](0,1)_{\mathrm{DR}}$

Low-Level Coding and Circuit Activity

Assumptions:

- b is a bit (i.e. $b \in\{0,1\}$, logical or mathematical value)
- electrical states for a wire $-V_{D D}($ logical 1$)$ or GND (logical 0)

Low-level codings of a bit:

	$b=0$	$b=1$
standard	$G \mathrm{GND}$	$V_{D D}$
dual rail	$\left.\begin{array}{r}r_{0}=V_{D D} \\ r_{1}=\mathrm{GND}\end{array}\right](1,0)_{\mathrm{DR}}$	$\left.\begin{array}{r}r_{0}=\mathrm{GND} \\ r_{1}=V_{D D}\end{array}\right](0,1)_{\mathrm{DR}}$

Low-Level Coding and Circuit Activity

Assumptions:

- b is a bit (i.e. $b \in\{0,1\}$, logical or mathematical value)
- electrical states for a wire $-V_{D D}($ logical 1$)$ or GND (logical 0)

Low-level codings of a bit:

	$b=0$	$b=1$
standard	- GND	$=V_{D D}$
dual rail	$\left[\begin{array}{l} r_{0}=V_{D D} \\ r_{1}=G N D \end{array}\right](1,0)_{\mathrm{DR}}$	$\left[\begin{array}{l} r_{0}=\mathrm{GND} \\ r_{1}=V_{D D} \end{array}\right](0,1)_{\mathrm{DR}}$

Circuit Logic Style

Countermeasure principles: uniformize circuit activity and exclusive coding

Circuit Logic Style

Countermeasure principles: uniformize circuit activity and exclusive coding

Solution based on precharge logic and dual-rail coding:

Circuit Logic Style

Countermeasure principles: uniformize circuit activity and exclusive coding

Solution based on precharge logic and dual-rail coding:

Solution based on validity line and dual-rail coding:

Important overhead: silicon area and local storage (registers)

Countermeasure: Architecture

Increase internal parallelism:

- replace one fast but big operator
- by several instances of a small but slow one

Protected Multipliers

Unprotected

Protected Multipliers

Unprotected

Protected
Overhead:
Area/time < 10 \%
References:
PhD D. Pamula [9]
Articles: [12], [11], [10]

Protected (Old) Accelerator

Warning: old dedicated accelerator (similar behavior is expected for our new one)

Circuit-Level Protections for Arithmetic Operators

References: [5] and [6]

Arithmetic Level Countermeasures

Redundant number system $=$

- a way to improve the performance of some operations
- a way to represent a value with different representations

Important property: $\forall i \quad\left[R_{i}(k)\right] \mathbf{P}=[k] \mathbf{P}$

Proposed solution: use random redundant representations of k

Double-Base Number System

Standard radix-2 representation:

$$
k=\sum_{i=0}^{t-1} k_{i} 2^{i}=\begin{array}{|l|l|l|l|l|l|}
\hline k_{t-1} & k_{t-2} & \cdots & k_{2} & k_{1} & k_{0} \\
\hline
\end{array}
$$

Double-Base Number System

Standard radix-2 representation:

$$
k=\sum_{i=0}^{t-1} k_{i} 2^{i}=\begin{array}{|l|l|l|l|l|l|l|}
\hline 2^{t-1} & 2^{t-2} & \cdots & 2^{2} & 2^{1} & 2^{0} & \text { implicit weights } \\
k_{t-1} & k_{t-2} & \cdots & k_{2} & k_{1} & k_{0} \\
\hline
\end{array}
$$

Digits: $k_{i} \in\{0,1\}$, typical size: $t \in\{160, \ldots, 600\}$

Double-Base Number System

Standard radix-2 representation:

$$
k=\sum_{i=0}^{t-1} k_{i} 2^{i}=\begin{array}{|l|l|l|l|l|l|l|}
2^{t-1} & 2^{t-2} & \cdots & 2^{2} & 2^{1} & 2^{0} & \text { implicit weights } \\
k_{t-1} & k_{t-2} & \cdots & k_{2} & k_{1} & k_{0} \\
\hline
\end{array}
$$

Digits: $k_{i} \in\{0,1\}, \quad$ typical size: $t \in\{160, \ldots, 600\}$

Double-Base Number System (DBNS):

$$
k=\sum_{j=0}^{n-1} k_{j} 2^{a_{j}} 3^{b_{j}}=
$$

Double-Base Number System

Standard radix-2 representation:

$$
k=\sum_{i=0}^{t-1} k_{i} 2^{i}=\begin{array}{|l|l|l|l|l|l|l|}
\hline 2^{t-1} & 2^{t-2} & \cdots & 2^{2} & 2^{1} & 2^{0} & \text { implicit weights } \\
\hline k_{t-1} & k_{t-2} & \cdots & k_{2} & k_{1} & k_{0} \\
\hline
\end{array}
$$

Digits: $k_{i} \in\{0,1\}, \quad$ typical size: $t \in\{160, \ldots, 600\}$

Double-Base Number System (DBNS):

$$
k=\sum_{j=0}^{n-1} k_{j} 2^{a_{j}} 3^{b_{j}}=\begin{array}{|c|c|c|c|}
\hline k_{n-1} & \cdots & k_{1} & k_{0} \\
a_{n-1} & \cdots & n(2,3)-\text { terms } \\
a_{1} & a_{0} & \begin{array}{l}
n \\
\text { explicit "digits" } \\
b_{n-1}
\end{array} & \cdots
\end{array} b_{1} \quad b_{0} \begin{aligned}
& \text { explicit ranks }
\end{aligned}
$$

$a_{j}, b_{j} \in \mathbb{N}, \quad k_{j} \in\{1\}$ or $k_{j} \in\{-1,1\}, \quad$ size $n \approx \log t$

Double-Base Number System

Standard radix-2 representation:

$$
k=\sum_{i=0}^{t-1} k_{i} 2^{i}=\begin{array}{|l|l|l|l|l|l|l|}
2^{t-1} & 2^{t-2} & \cdots & 2^{2} & 2^{1} & 2^{0} & \text { implicit weights } \\
k_{t-1} & k_{t-2} & \cdots & k_{2} & k_{1} & k_{0} \\
\hline
\end{array}
$$

Digits: $k_{i} \in\{0,1\}$, typical size: $t \in\{160, \ldots, 600\}$

Double-Base Number System (DBNS):

$$
k=\sum_{j=0}^{n-1} k_{j} 2^{a_{j}} 3^{b_{j}}=\begin{array}{|c|c|c|c|}
\hline k_{n-1} & \cdots & k_{1} & k_{0} \\
a_{n-1} & \cdots & n(2,3)-\text { terms } \\
a_{1} & a_{0} & \begin{array}{l}
n \\
\text { explicit "digits" } \\
b_{n-1}
\end{array} & \cdots
\end{array} b_{1} \quad b_{0} \begin{aligned}
& \text { explicit ranks }
\end{aligned}
$$

$a_{j}, b_{j} \in \mathbb{N}, \quad k_{j} \in\{1\}$ or $k_{j} \in\{-1,1\}, \quad$ size $n \approx \log t$
DBNS is a very redundant and sparse representation: $\quad 1701=(11010100101)_{2}$

$$
\begin{aligned}
1701 & =243+1458=2^{0} 3^{5}+2^{1} 3^{6}=(1,0,5),(1,1,6) \\
& =1728-27=2^{6} 3^{3}-2^{0} 3^{3}=(1,6,3),(-1,0,3) \\
& =729+972=2^{0} 3^{6}+2^{2} 3^{5}=(1,0,6),(1,2,5)
\end{aligned}
$$

Randomized DBNS Recoding of the Scalar k

encryption

\mid signature

On-the-fly DBNS random recoding for the scalar k
randomly recode windows of the scalar k on-the-fly:
$1+2 \leftrightarrows 3 \quad 1+3 \leftrightarrows 2^{2} \quad 1+2^{3} \leftrightarrows 3^{2}$
control number of reductions (\leftarrow) and expansions (\rightarrow)

possible rules recoding rules

Point tripling operation
$\mathbf{Q}=\operatorname{TPL}(\mathbf{P})=\mathbf{P}+\mathbf{P}+\mathbf{P}$

Randomized DBNS Recoding of the Scalar k

encryption

On-the-fly DBNS random recoding for the scalar k
randomly recode windows of the scalar k on-the-fly:
$1+2 \leftrightarrows 3 \quad 1+3 \leftrightarrows 2^{2} \quad 1+2^{3} \leftrightarrows 3^{2}$
control number of reductions (\leftarrow) and expansions (\rightarrow)

possible rules recoding rules
random choice $\cdots \cdots \cdot \gg \cdots$ recoded $k_{i}\left(, k_{i+1}\right)$

Point tripling operation
$\mathbf{Q}=\operatorname{TPL}(\mathbf{P})=\mathbf{P}+\mathbf{P}+\mathbf{P}$

Randomized DBNS Recoding of the Scalar k

encryption

On-the-fly DBNS random recoding for the scalar k
randomly recode windows of the scalar k on-the-fly:
$1+2 \leftrightarrows 3 \quad 1+3 \leftrightarrows 2^{2} \quad 1+2^{3} \leftrightarrows 3^{2}$
control number of reductions (\leftarrow) and expansions (\rightarrow)

possible rules recoding rules
random choice $\cdots \cdots \cdot \ggg>$ recoded $k_{i}\left(, k_{i+1}\right)$

Point tripling operation
$\mathbf{Q}=\operatorname{TPL}(\mathbf{P})=\mathbf{P}+\mathbf{P}+\mathbf{P}$

DBNS is redundant \Rightarrow security DBNS is sparse $\Rightarrow 20-30 \%$ speed \nearrow Ref: [3] Chabrier, Pamula \& Tisserand. Asilomar 2009

References

References I

Surveys: Proc. IEEE 2006 [1], Proc. IEEE 2012 [2], IEEE TVLSI 2013 [7]
[1] H. Bar-EI, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan.
The sorcerer's apprentice guide to fault attacks.
Proceedings of the IEEE, 94(2):370-382, February 2006.
[2] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache.
Fault injection attacks on cryptographic devices: Theory, practice, and countermeasures.
Proceedings of the IEEE, 100(11):3056-3076, November 2012.
[3] T. Chabrier, D. Pamula, and A. Tisserand.
Hardware implementation of DBNS recoding for ECC processor.
In Proc. 44rd Asilomar Conference on Signals, Systems and Computers, pages 1129-1133, Pacific Grove, California, U.S.A., November 2010. IEEE.
[4] T. Chabrier and A. Tisserand.
On-the-fly multi-base recoding for ECC scalar multiplication without pre-computations.
In A. Nannarelli, P.-M. Seidel, and P. T. P. Tang, editors, Proc. 21st Symposium on Computer Arithmetic (ARITH), pages 219-228, Austin, TX, U.S.A, April 2013. IEEE Computer Society.
[5] J. Chen, A. Tisserand, E. M. Popovici, and S. Cotofana. Robust sub-powered asynchronous logic.
In J. Becker and M. R. Adrover, editors, Proc. 24th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), pages 1-7, Palma de Mallorca, Spain, September 2014. IEEE.
[6] J. Chen, A. Tisserand, E. M. Popovici, and S. Cotofana.
Asynchronous charge sharing power consistent Montgomery multiplier.
In J. Sparso and E Yahya, editors, Proc. 21st IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC), pages 132-138, Mountain View, California, USA, May 2015.
[7] D. Karaklajic, J.-M. Schmidt, and I. Verbauwhede.
Hardware designer's guide to fault attacks.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21(12):2295-2306, December 2013.

References II

[8] P. C. Kocher, J. Jaffe, and B. Jun.
Differential power analysis.
In Proc. Advances in Cryptology (CRYPTO), volume 1666 of LNCS, pages 388-397. Springer, August 1999.
[9] D. Pamula.
Arithmetic Operators on GF $\left(2^{m}\right)$ for Cryptographic Applications: Performance - Power Consumption - Security Tradeoffs.
Phd thesis, University of Rennes 1 and Silesian University of Technology, December 2012.
[10] D. Pamula, E. Hrynkiewicz, and A. Tisserand.
Analysis of $\mathrm{GF}\left(2^{233}\right)$ multipliers regarding elliptic curve cryptosystem applications.
In 11th IFAC/IEEE International Conference on Programmable Devices and Embedded Systems (PDeS), pages 271-276, Brno, Czech Republic, May 2012.
[11] D. Pamula and A. Tisserand.
$\mathrm{GF}\left(2^{m}\right)$ finite-field multipliers with reduced activity variations.
In 4th International Workshop on the Arithmetic of Finite Fields, volume 7369 of LNCS, pages 152-167, Bochum, Germany, July 2012. Springer.
[12] D. Pamula and A. Tisserand.
Fast and secure finite field multipliers.
In Proc. 18th Euromicro Conference on Digital System Design (DSD), pages 653-660, Madeira, Portugal, August 2015.
[13] J. Proy, N. Veyrat-Charvillon, A. Tisserand, and N. Meloni.
Full hardware implementation of short addition chains recoding for ECC scalar multiplication.
In Actes Conférence d'informatique en Parallélisme, Architecture et Système (ComPAS), Lille, France, June 2015.

Good Books (in French)

Micro et nano-électronique
Bases, Composants, Circuits
Hervé Fanet
2006
Dunod
ISBN: 2-10-049141-5

Arithmétique des ordinateurs Jean-Michel Muller
1989
Masson

ISBN: 2-225-81689-1
(web version)

CMOS VLSI Design

A Circuits and Systems Perspective
Neil Weste and David Harris
3rd edition, 2004
Addison Wesley
ISBN: 0-321-14901-7

Power Analysis Attacks

Revealing the Secrets of Smart Cards Stefan Mangard, Elisabeth Oswald and Thomas Popp 2007
Springer
ISBN:978-0-387-30857-9

Good Books (in English)

Digital Arithmetic

Milos Ercegovac and Tomas Lang 2003
Morgan Kaufmann
ISBN: 1-55860-798-6

Digital Arithmetic

Thank you!

Contact (will change in a few months):

- mailto:arnaud.tisserand@univ-ubs.fr
- http://www-labsticc.univ-ubs.fr/~tisseran

