
Introduction to Efficient and Secure Arithmetic Circuits

Arnaud TISSERAND

CNRS, Lab-STICC

Conférence rentrée informatique ENS Paris-Scalay. Sept. 2021

--

Course Language

Slides have been prepared in English.

Some words/remarks are also given in FR French in case of not immediate
translation or specific feature.

Questions, comments and help requests are welcome in both French and
English.

2/96

Licence

This document is licensed under a Creative Commons Attribution -
NonCommercial 4.0 International License.

https://creativecommons.org/licenses/by-nc/4.0/

All figures and tables not from the author are presented with their source.

3/96

https://creativecommons.org/licenses/by-nc/4.0/

Summary

Computer Arithmetic

Preliminaries on Digital Circuits

Addition & Multiplication

Introduction to Physical Attacks

Protections at the Arithmetic Level

References

References to books, articles and links are given throughout and at the end of this

document.

4/96

Computer Arithmetic

5/96

What is Computer Arithmetic? (Personal Definition)

Branch of computer engineering/science that deals with:

• representations of numbers: formats, coding and behavior for (subsets
of) N, Z, Q, R, C, Fq, . . . , fixed vs multiple precision;

• algorithms for operations: ±, ×, ÷,
√

, 1
x , 1√

x
, 1√

x2+y2
, exp, log, sin,

cos, mod, gcd, (a + b) mod p, conversions, . . . ;

• implementations in hardware or(/and) software;

• quality: error/accuracy, specific cases (div. by 0), reproducibility;

• speed: delay, latency, throughput;

• costs: silicon area, code/data memory, power/energy consumption;

• methods and tools: study, coding, validation, verification, porting,
evaluation, . . . ;

• training of programmers and users;

• ?

6/96

Computer Arithmetic Overview

arithmetic

target

representations
of numbers

N,Z,Q,' R,Fq

algorithms
±,×,÷, q

√
,mod,

S, ex ,' f (x), . . .

validation
a priori

a posteriori

accuracy
behavior

test, simulation
proof, formal method

performances
modelling

measurement

speed, throughput, latency
circuit area

memory (I and D)
energy, power

security, reliability

tools and
support

HW/SW code generators
libraries

integration into high-level tools

7/96

Computer Arithmetic Overview

arithmetic

target

representations
of numbers

N,Z,Q,' R,Fq

algorithms
±,×,÷, q

√
,mod,

S, ex ,' f (x), . . .

implementation
soft GPP/SP,

ASIC, FPGA

validation
a priori

a posteriori

accuracy
behavior

test, simulation
proof, formal method

performances
modelling

measurement

speed, throughput, latency
circuit area

memory (I and D)
energy, power

security, reliability

tools and
support

HW/SW code generators
libraries

integration into high-level tools

7/96

Computer Arithmetic Overview

arithmetic

target

representations
of numbers

N,Z,Q,' R,Fq

algorithms
±,×,÷, q

√
,mod,

S, ex ,' f (x), . . .

implementation
soft GPP/SP,

ASIC, FPGA

application

validation
a priori

a posteriori

accuracy
behavior

test, simulation
proof, formal method

performances
modelling

measurement

speed, throughput, latency
circuit area

memory (I and D)
energy, power

security, reliability

tools and
support

HW/SW code generators
libraries

integration into high-level tools

7/96

Computer Arithmetic Overview

arithmetic

target

representations
of numbers

N,Z,Q,' R,Fq

algorithms
±,×,÷, q

√
,mod,

S, ex ,' f (x), . . .

implementation
soft GPP/SP,

ASIC, FPGA

application

validation
a priori

a posteriori

accuracy
behavior

test, simulation
proof, formal method

performances
modelling

measurement

speed, throughput, latency
circuit area

memory (I and D)
energy, power

security, reliability

tools and
support

HW/SW code generators
libraries

integration into high-level tools

7/96

Computer Arithmetic Overview

arithmetic

target

representations
of numbers

N,Z,Q,' R,Fq

algorithms
±,×,÷, q

√
,mod,

S, ex ,' f (x), . . .

implementation
soft GPP/SP,

ASIC, FPGA

application

validation
a priori

a posteriori

accuracy
behavior

test, simulation
proof, formal method

performances
modelling

measurement

speed, throughput, latency
circuit area

memory (I and D)
energy, power

security, reliability

tools and
support

HW/SW code generators
libraries

integration into high-level tools

7/96

Computer Arithmetic Overview

arithmetic

target

representations
of numbers

N,Z,Q,' R,Fq

algorithms
±,×,÷, q

√
,mod,

S, ex ,' f (x), . . .

implementation
soft GPP/SP,

ASIC, FPGA

application

adequacy

validation
a priori

a posteriori

accuracy
behavior

test, simulation
proof, formal method

performances
modelling

measurement

speed, throughput, latency
circuit area

memory (I and D)
energy, power

security, reliability

tools and
support

HW/SW code generators
libraries

integration into high-level tools

7/96

Computer Arithmetic Overview

arithmetic

target

representations
of numbers

N,Z,Q,' R,Fq

algorithms
±,×,÷, q

√
,mod,

S, ex ,' f (x), . . .

implementation
soft GPP/SP,

ASIC, FPGA

application

adequacy

validation
a priori

a posteriori

accuracy
behavior

test, simulation
proof, formal method

performances
modelling

measurement

speed, throughput, latency
circuit area

memory (I and D)
energy, power

security, reliability

tools and
support

HW/SW code generators
libraries

integration into high-level tools

7/96

Computer Arithmetic Overview

arithmetic

target

representations
of numbers

N,Z,Q,' R,Fq

algorithms
±,×,÷, q

√
,mod,

S, ex ,' f (x), . . .

implementation
soft GPP/SP,

ASIC, FPGA

application

adequacy

validation
a priori

a posteriori

accuracy
behavior

test, simulation
proof, formal method

performances
modelling

measurement

speed, throughput, latency
circuit area

memory (I and D)
energy, power

security, reliability

tools and
support

HW/SW code generators
libraries

integration into high-level tools

7/96

Computer Arithmetic Close Domains

• microelectronics for digital circuits;

• computer architecture for processor design (units, instructions,
registers, interruptions, counters . . .);

• programming languages and compilation;

• numerical computing and applied mathematics;

• formal proofs and verification methods;

• computer algebra (FR calcul formel);

• specific application domains such as signal and image processing, AI

• and probably other domains. . .

8/96

Computer Arithmetic in Software (Example SW1)

The following Python code:

a, b = 1, 9
c = a + b
print(c, type(c))

from math import *
x = pi + 1.0
print(x, type(x))

print([sin(pi/n) for n in [4, 6, 12]])

produces (using Python 3.7):

10 <class 'int'>
4.141592653589793 <class 'float'>
[0.7071067811865475, 0.49999999999999994, 0.25881904510252074]

Warning : do not perform large computations using “raw” Python, use
NumPy standard library (see also Numba or PyPy)!

9/96

Computer Arithmetic in Software (Example SW2)

The following C code:

#include <stdio.h>
#include <math.h>

int main() {
double n = 4.0;
double x = M_PI;
double y = sin(x/n);
printf("y = %f\n", y);
return 0;

}

compiled (gcc 8.3) using:

gcc -lm example_sin.c

produces:

y = 0.707107

10/96

Computer Arithmetic in Software (Example SW3)

The following Python code:

a = 1.0
b = 12.345e50
c = 9.8765e-40
v = [a, -a, b, -b, c, -c]
print(sum(v))

from itertools import permutations
print(sorted(set([sum(e) for e in permutations(v)])))

produces (using Python 3.7):

0.0
[-1.0, -9.8765e-40, 0.0, 9.8765e-40, 1.0]

Warning : associativity does not (necessarily) hold for floating-point
arithmetic! See for instance: David Goldberg. What every computer
scientist should know about floating-point arithmetic. ACM Comput. Surv.
23, March 1991, DOI: https://doi.org/10.1145/103162.103163

11/96

https://doi.org/10.1145/103162.103163

Computer Arithmetic in Hardware (Example HW1)

Overview of one core in an Intel Xeon processor, source: https:

//www.hc32.hotchips.org/assets/program/conference/day1/

HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf

Link to other examples: https://en.wikichip.org/wiki/WikiChip

12/96

https://www.hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://www.hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://www.hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf
https://en.wikichip.org/wiki/WikiChip

Computer Arithmetic in Hardware (Example HW2)
Source: NVIDIA TURING GPU ARCHITECTURE white paper
(WP-09183-001 v01)

See also: https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/

13/96

https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/

Preliminaries on Digital Circuits

14/96

Logic Values: Representation
The logic values {0, 1} are represented using voltages:

• 0 ⇐⇒ reference voltage or ground (VSS ,)

• 1 ⇐⇒ supply voltage (VDD > 0 or)

Due to the noise in the circuit (from many sources), the logic values must
be represented using voltage intervals (noise margins): digital vs. analog

VSS VDD

output

input
0 1

G2G1

 1

 2

 3

 4

 5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S
up

pl
y

vo
lta

ge
 (

V
D

D
)

Technology (µm)

1990

1993
1995

1997

1999
2002

2005

2008

15/96

CMOS Logic

CMOS = complementary MOS

N and P transistors are only used for passing strong signals

0

1

G = 1G = 0

1 01

G = 0 G = 1

01 0

outputinputs

?

?

S D

G

P

S D

G

N

Network
Pull−up

P Transistors

N Transistors

Pull−down
Network

16/96

Logic Gate: Inverter
The simplest gate: only 2 transistors (1 N and 1 P)

A Y
A Y

0 1

1 0

P

N

1 1 1

0 0 0

0 1 1 0

circuit: behavior:

A Y

17/96

Logic Gate: NAND2 (2-input not–and)

A

B
Y

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

BA

A

B

Y

18/96

Logic Gate: NAND3 (3-input NAND)

A

B

C

Y

A B C Y

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

A

B

A B C

C

Y

The number of transistors in series is limited (3 to 5)

19/96

Memory Elements

There are many types of memory elements. Here, we will only focus on
standard flip-flops

D Q

D Q

QN
CLK

CLK
CLK D Q(t+1) QN(t+1)

1 X Q(t) QN(t)

0 X Q(t) QN(t)

↑ 0 0 1

↑ 1 1 0

Remark:
↑ is the rising clock edge 0

1

T

20/96

Setup, Hold and Propagation Delays

time

D

clk

Q

tsetup thold

tpropag

• setup delay (tsetup): data should be held steady before clock edge

• hold delay (thold): data should be held steady after clock edge

• propagation delay (tpropag): propagation time from D to Q

21/96

Fanout (FR sortance)

The gate delay (change output state) depends
on the output load. Fanout measures this load
as the number of inputs of gate connected to
the output (normalized w.r.t. an inverter)

FO = 4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

D
el

ay
 [n

s]

FO

INV X1 (R)
INV X1 (F)
INV X4 (R)
INV X4 (F)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
el

ay
 [n

s]

FO

NAND2 (R)
NAND2 (F)
NAND3 (R)
NAND3 (F)
NAND4 (R)
NAND4 (F)

22/96

Power Consumption: Basic Definitions

Instantaneous power:

P(t) = iDD(t) VDD

Energy over some time interval T:

E =

∫ T

0
iDD(t) VDD dt

Average power over interval T:

Pavg =
E

T
=

1

T

∫ T

0
iDD(t) VDD dt

VDD

i DD

cir
cu

it

Units:
• current A
• voltage V
• power W
• energy J or Wh

23/96

Power Consumption: Components

Power dissipation in CMOS circuits comes from 2 main components:

• static dissipation:
I sub-threshold conduction through OFF transistors
I leakage current through P-N junctions
I tunneling current through gate oxide
I . . .

• dynamic dissipation:
I charging and discharging of load capacitances (useful + parasitic)
I short-circuit current

Ptotal = Pstatic + Pdynamic

24/96

Charging and Discharging Load Capacitances

There are capacitances everywhere in the circuit: transistor gate, routing,
parasitics. . .

CMOS
gate gates

routing

parasitic

Solutions:

• design small circuits (small transistor, short wires, technology
shrinking)

• reduce the activity (algorithms, data coding, sleep mode)

• reduce VDD (without lowering speed)

25/96

Simple Power Consumption Model

Average dynamic power dissipation (no leakage, no short circuit):

P = α× C × f × V 2
DD

where

• α is the activity factor

• C is the average switched capacitance (at each cycle)

• f is the circuit frequency

• VDD is the supply voltage

Remark: the gate delay is d = γ × C×VDD
(VDD−VT)2 ≈ 1

VDD

26/96

Power Reduction at Gate Level

• gate and/or input reordering (reduce glitching power):
Solution 1

Solution 2
1

s1

i

2

s2

s2

s1

i 2

i 1

i

c

b

a

t

b

c

b

a

a

c

• use complex gates (reduce internal capacitances and area):

AND3OR2

AND2

AND2

AND2

OR2

AND2

27/96

Addition & Multiplication

28/96

Positional Number System(s)

X =
n−1∑

i=−m

xi β
i = (xn−1xn−2 · · · x1x0 . x−1x−2 · · · x−m)

• radix β (usually a power of 2)

• digits xi (∈ N) in the digit set D
• rank or position i , weight βi

• n integer digits, m fractional digits

Examples:

• β = 10,D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• β = 2,D = {0, 1}

• carry save: β = 2,Dcs = {0, 1, 2}
• borrow save: β = 2,Dbs = {−1, 0, 1}
• signed digits: β > 2,Dsd,α,β = {−α, . . . , α} with 2α + 1 ≥ β
• theoretical systems: β = 1+

√
5

2 , β = 1 + i . . .

29/96

Positional Number System(s)

X =
n−1∑

i=−m

xi β
i = (xn−1xn−2 · · · x1x0 . x−1x−2 · · · x−m)

• radix β (usually a power of 2)

• digits xi (∈ N) in the digit set D
• rank or position i , weight βi

• n integer digits, m fractional digits

Examples:

• β = 10,D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• β = 2,D = {0, 1}
• carry save: β = 2,Dcs = {0, 1, 2}
• borrow save: β = 2,Dbs = {−1, 0, 1}

• signed digits: β > 2,Dsd,α,β = {−α, . . . , α} with 2α + 1 ≥ β
• theoretical systems: β = 1+

√
5

2 , β = 1 + i . . .

29/96

Positional Number System(s)

X =
n−1∑

i=−m

xi β
i = (xn−1xn−2 · · · x1x0 . x−1x−2 · · · x−m)

• radix β (usually a power of 2)

• digits xi (∈ N) in the digit set D
• rank or position i , weight βi

• n integer digits, m fractional digits

Examples:

• β = 10,D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• β = 2,D = {0, 1}
• carry save: β = 2,Dcs = {0, 1, 2}
• borrow save: β = 2,Dbs = {−1, 0, 1}
• signed digits: β > 2,Dsd,α,β = {−α, . . . , α} with 2α + 1 ≥ β

• theoretical systems: β = 1+
√

5
2 , β = 1 + i . . .

29/96

Positional Number System(s)

X =
n−1∑

i=−m

xi β
i = (xn−1xn−2 · · · x1x0 . x−1x−2 · · · x−m)

• radix β (usually a power of 2)

• digits xi (∈ N) in the digit set D
• rank or position i , weight βi

• n integer digits, m fractional digits

Examples:

• β = 10,D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• β = 2,D = {0, 1}
• carry save: β = 2,Dcs = {0, 1, 2}
• borrow save: β = 2,Dbs = {−1, 0, 1}
• signed digits: β > 2,Dsd,α,β = {−α, . . . , α} with 2α + 1 ≥ β
• theoretical systems: β = 1+

√
5

2 , β = 1 + i . . .

29/96

Radix-2 Signed Integers

• sign and magnitude (absolute value)

A = (saan−2 . . . a1a0) = (−1)sa ×
n−2∑
i=0

ai 2
i

• 2’s complement

A = (an−1an−2 . . . a1a0) = −an−12n−1 +
n−2∑
i=0

ai 2
i

• biased (usually B = 2n−1 − 1)

A = Amath + B

• . . .

30/96

Signed Integers

−8
−7
−6
−5
−4
−3
−2
−1
0
1
2
3
4
5
6
7
8

0111
0110
0101
0100
0011
0010
0001
0000
1001
1010
1011
1100
1101
1110
1111

1000
1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

biased
(B=7)

2’s complementinteger

representations

sign/magnitude

31/96

Fixed-Point Representations

Widely used in DSPs and digital integrated circuits for higher speed, lower
silicon area and power consumption compared to floating point

081623

ranksMSB LSB

2 2 2 2 2 2 2 2

22 2 2 2 2 2 2 2 2 2 2 2 22
−2 −5−1 −3 −4 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15

22 2 2 2 2 2 2 2 2 2 2 2 2 22
−2 −5−1 −3 −4 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15 −16

89101112131415

2
0

2 2 2 2 2 2 22
01234567

2 2 2 2 2 2 22
01234567

22 2 2 2 2 2 2 2 2 2 2 2 22
−2 −5−1 −3 −4 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15

2
−16

1Q15

Q16

N16 or Z16

8Q16

s

s

s

s

Typical fixed-point formats: 16, 24, 32 and 48 bits

32/96

Floating-Point Representation(s)

Radix-β floating-point representation of x :

• sign sx , 1-bit encoding: 0⇒ x > 0 and 1⇒ x < 0

• exponent ex ∈ N on k digits and emin ≤ ex ≤ emax

• mantissa mx on n + 1 digits

• encoding:

x = (−1)sx ×mx × βex

mx = x0 . x1 x2 x3 · · · xn

xi ∈ {0, 1, . . . , β − 1}

For accuracy purpose, the mantissa must be normalized (x0 6= 0)

Then mx ∈ [1, β[and a specific encoding is required for the number 0

33/96

IEEE-754: basic formats
Radix β = 2, the first bit of the normalized mantissa is always a “1”
(non-stored implicit bit)

number of bits
format total sign exponent mantissa

double precision 64 1 11 52 + 1

simple precision 32 1 8 23 + 1

LSBMSB ranks

double precision

single precision

0816243240485663

34/96

IEEE-754: Exponent and Special Values

size bias unbiased biased

format k b emin emax emin emax

SP 8 127 (= 28−1 − 1) −126 127 1 254

DP 11 1023 (= 211−1 − 1) −1022 1023 1 2046

−0 1 00000000 00000000000000000000000

+0 0 00000000 00000000000000000000000

−∞ 1 11111111 00000000000000000000000

+∞ 0 11111111 00000000000000000000000

NaN 0 11111111 00000000000000000000001 (for instance)

Not a Number (NaN) is the result of invalid operations such as 0/0,
√
−1 or

0×∞

35/96

Basic Cells for Addition

Useful circuit element in computer arithmetic: counter

A (m, k)-counter is a cell that counts the number of 1 on its m inputs
(result expressed as a k-bit integer)

m−1∑
i=0

ai =
k−1∑
j=0

sj 2
j

...

...

a a a a01m−1 m−2

s sk−1 0

(m,k)

Standard counters:

• half-adder or HA is a (2,2)-counter

• full-adder or FA is a (3,2)-counter

36/96

FA Cell

FA

b

s

a d

c

a b d c s

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Arithmetic equation:

2c + s = a + b + d

Logic equation:

s = a⊕ b ⊕ d

c = ab + ad + bd

 0

 1

 2

 3

 1990 1992 1994 1996 1998 2000 2002 2004

#a
rt

ic
le

s

Year

Articles about FA in IEEE Journals

There many implementations of
the FA cell

37/96

Carry Ripple Adder (CRA)

Very simple architecture: n FA cells connected in series

s s s s s s

rrrrrr

5 5 4 4 3 3 2 2 1 1 0 0

05 4 3 2 1

012345s6

ba

FA

ba

FA

ba

FA

ba

FA

ba

FA

ba

FA

complexity

delay O(n)

area O(n)

Warning: Sometimes a CRA is also called Carry Propagate Adder (CPA),
but CPA also means a non-redundant adder (that propagates)

38/96

Useless Activity in a Carry Ripple Adder

s s s s s s

rrrrrr

5 5 4 4 3 3 2 2 1 1 0 0

05 4 3 2 1

012345s6

ba

FA

ba

FA

ba

FA

ba

FA

ba

FA

ba

FA
Very simple architecture:

n FA cells connected in series

stable

activity

FA FA FA FA FA FA

V

V

CLK

t

t

cycle i

cycle i+1

1 1 0 0 1 1 0 0 1 1 0 0

110101010101

0 1 0 1 00

0

1
0
1
0
1
0 0

0
1
0
1
0 1

0
1
0
0
0 0

0
0
0
1
0 1

0
0
0
0
0 0

0
0
0
0
0

cycle i

cycle i+1
CLK

Theoretical models (equiprobable and uniform distribution of inputs):

• worst case n2/2 transitions
• average 3n/2 transitions and only n/2 useful

39/96

Carry-Select Adder

Idea: computation of the higher half part for the 2 possible input carries (0
and 1) and selection when the output carry from lower half part is known

sn

0

1

sH

aL bL

bHaH

sL

0 1 1 0

lower part

higher part

Recursive version −→ O(log n) delay but there is a fanout problem. . .

40/96

Carry Lookahead Adder

Idea: compute all carries as fast as possible (instead of propagating them)

At rank i , the input carry ci is 1 in the following cases:

• rank i − 1 generates a carry
↪→ gi−1 = 1

• rank i − 1 propagates a carry generated at rank i − 2
↪→ pi−1 = gi−2 = 1

• ranks i − 1 and i − 2 propagate a carry generated at rank i − 3
↪→ pi−1 = pi−2 = gi−3 = 1

...

• ranks i − 1 to 0 propagate the adder input carry c0 (set to 1)
↪→ pi−1 = pi−2 = . . . = p1 = p0 = c0 = 1

41/96

All carries can be computed using the relation (ci = gi−1 + ci−1pi−1):

ci = gi−1 + pi−1gi−2 + pi−1pi−2gi−3 + . . .+ pi−1 · · · p1g0 + pi−1 · · · p0c0

CLA architecture: parallel evaluation of

• (gi , pi) for all i

• carries ci for all i using the above equation

• sums using si = ai ⊕ bi ⊕ ci = pi ⊕ ci

1 1

s s s ss

n−1 n−1 n−2 n−2 0 0

0

0

0

1

1

1

n−1 n−1

n−1

n−1

n−2 n−2

n−2

n−2

1 0

n

n

a b a b a b a b

PG PG PG PG

p p p p

c c

c

gggg

c
c

icomputation of the c ’s

42/96

Carry Lookahead Adder: 4-Bit Example

c1 = g0 + p0c0

c2 = g1 + p1g0 + p1p0c0

c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0

c4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0

00112233

24 3 1

0

gpgpgpgp

cccc

c

43/96

Parallel-Prefix Problems

The n outputs (yn−1, yn−2,· · · , y0) are computed using the n inputs (xn−1,
xn−2,· · · , x0) and the associative operator �:

y0 = x0

y1 = x1� x0

y2 = x2� x1� x0

...

yn−1 = xn−1� xn−2� · · · � x1� x0

x x x x x x x x

y y y y y y y y

x x

y y

9

9

8

8

7 6

6

5

5

4 3

3

2

2

1

1 0

0

7 4

44/96

Parallel-Prefix Addition: Standard Architectures

0

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

carry ripple

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

4

3

2

1

Sklansky

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

4

3

2

1

5

6

Brent−Kung

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4

0

2

1

3

Kogge−Stone

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

2

1

3

Han−Carlson

4

5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

45/96

Redundant or Constant Time Adders

To speed-up the addition, one solution consists in “saving” the carries and
using them (this makes sense only in case of multiple additions)

In 1961, Avizienis suggested to represent numbers in radix β with digits in
{−α,−α + 1, . . . , 0, . . . , α− 1, α} instead of {0, 1, 2, . . . , β − 1} with
α ≤ β − 1

Using this representation, if 2α+ 1 > β some numbers have several possible
representation at the bit level. For instance, the value 2345 (in the standard
representation) can be represented in radix 10 with digits in
{−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5} by the values 2345, 235(-5) or
24(-5)(-5)

Such a representation is said redundant

In a redundant number system there is constant-time addition algorithm
(without carry propagation) where all computations are done in parallel

46/96

Addition

using the carry-save representation

Q: How can we speed up addition?

R: Save the carries!

r0

w5 w4 w3 w2 w1 w0

FA

x4 y4

s4

FA

x3 y3

s3

FA

x2 y2

s2

FA

x1 y1

s1

FA

x0 y0

s0s5

r5

z4

r4

z3

r3

z2

r2

z1

r1

z0

r0s5

0

X + Y + Z = S + R =
n∑

i=0

(si + ri) 2i

= W =
n∑

i=0

wi 2i avec wi = si + ri ∈ {0, 1, 2}

=

(
wnwn−1 . . .w1w0

)
cs

=

(
sn

rn

sn−1

rn−1
· · · s1

r1

s0

r0

)
cs

The computation time does not depend on n T (n) = O(1)

47/96

Addition

using the carry-save representation

Q: How can we speed up addition?
R: Save the carries!

r0

w5 w4 w3 w2 w1 w0

FA

x4 y4

s4

FA

x3 y3

s3

FA

x2 y2

s2

FA

x1 y1

s1

FA

x0 y0

s0

s5

r5

z4

r4

z3

r3

z2

r2

z1

r1

z0

r0s5

0

X + Y + Z = S + R =
n∑

i=0

(si + ri) 2i

= W =
n∑

i=0

wi 2i avec wi = si + ri ∈ {0, 1, 2}

=

(
wnwn−1 . . .w1w0

)
cs

=

(
sn

rn

sn−1

rn−1
· · · s1

r1

s0

r0

)
cs

The computation time does not depend on n T (n) = O(1)

47/96

Addition

using the carry-save representation

Q: How can we speed up addition?
R: Save the carries!

r0

w5 w4 w3 w2 w1 w0

FA

x4 y4

s4

FA

x3 y3

s3

FA

x2 y2

s2

FA

x1 y1

s1

FA

x0 y0

s0

s5

r5

z4

r4

z3

r3

z2

r2

z1

r1

z0

r0s5

0

X + Y + Z = S + R =
n∑

i=0

(si + ri) 2i

= W =
n∑

i=0

wi 2i avec wi = si + ri ∈ {0, 1, 2}

=

(
wnwn−1 . . .w1w0

)
cs

=

(
sn

rn

sn−1

rn−1
· · · s1

r1

s0

r0

)
cs

The computation time does not depend on n T (n) = O(1)

47/96

Addition using the carry-save representation
Q: How can we speed up addition?
R: Save the carries!

r0

w5 w4 w3 w2 w1 w0

FA

x4 y4

s4

FA

x3 y3

s3

FA

x2 y2

s2

FA

x1 y1

s1

FA

x0 y0

s0

s5

r5

z4

r4

z3

r3

z2

r2

z1

r1

z0

r0s5

0

X + Y + Z = S + R =
n∑

i=0

(si + ri) 2i

= W =
n∑

i=0

wi 2i avec wi = si + ri ∈ {0, 1, 2}

=

(
wnwn−1 . . .w1w0

)
cs

=

(
sn

rn

sn−1

rn−1
· · · s1

r1

s0

r0

)
cs

The computation time does not depend on n T (n) = O(1)

47/96

Addition using the carry-save representation
Q: How can we speed up addition?
R: Save the carries!

r0

w5 w4 w3 w2 w1 w0

FA

x4 y4

s4

FA

x3 y3

s3

FA

x2 y2

s2

FA

x1 y1

s1

FA

x0 y0

s0

s5

r5

z4

r4

z3

r3

z2

r2

z1

r1

z0

r0s5

0

X + Y + Z = S + R =
n∑

i=0

(si + ri) 2i

= W =
n∑

i=0

wi 2i avec wi = si + ri ∈ {0, 1, 2}

=

(
wnwn−1 . . .w1w0

)
cs

=

(
sn

rn

sn−1

rn−1
· · · s1

r1

s0

r0

)
cs

The computation time does not depend on n T (n) = O(1)

47/96

Addition of 2 Carry-Save Numbers

w5 w4 w3 w2 w1 w0

FA

x4

◦ •
y4

◦ •

FA

◦•

FA

x3

◦ •
y3

◦ •

FA

◦•

FA

x2

◦ •
y2

◦ •

FA

◦•

FA

x1

◦ •
y1

◦ •

FA

◦•

FA

x0

◦ •
y0

◦ •

FA

◦•

0
0

◦
0

•

X =
n∑

i=0

xi 2i avec xi = xs,i + xr ,i = ◦+ •

Y =
n∑

i=0

yi 2i avec yi = ys,i + yr ,i = ◦+ •

X+Y = W =
n∑

i=0

wi 2i avec wi = ws,i + wr ,i = ◦+ •

48/96

Carry-Save Trees

Example with 3 inputs: A, B and C
ca b c a b c a b c a b c a b a b c0 0011122333444555 2

s5 s4 s3 s2 s1 s0s6

FAFAFAFAFAFA

0112233456 5 4
0 0

Carry-save reduction tree: n(h) non-redundant inputs can be reduced by a
h-level carry-save tree where n(h) = b3n(h − 1)/2c and n(0) = 2

h 1 2 3 4 5 6 7 8 9 10 11

n(h) 3 4 6 9 13 19 28 42 63 94 141

49/96

Shift-And-Add Multiplication

The product P = A× B can be performed using additions and shifts with
the following (parallel-serial) algorithm:

1 P ←− 0
2 f o r i from 0 to n − 1 do
3 P ←− P + ai B2i

Remark: This algorithm requires a shifter operator (variable shift amount)

Simplification (constant shift):

1 P ←− 0
2 f o r i from 0 to n − 1 do
3 P ←− (P + ai B)× 2−1

4 P ←− P2n

Operation on line 4 is virtual

50/96

Shift-And-Add Multiplication: Implementation

SHL10

setreset clk A 0 B

ai
Reg SP

P

Reg

complexity

delay O(n)

area O(n)

51/96

Fast Multipliers

1. partial products generation ai bj

(with or without recoding)
↪→ delay in O(1) (fanout ai ,bj

O(log n))

2. sum of the partial products using
a carry-save reduction tree
↪→ delay in O(log n)

3. assimilation of the carries using a
fast adder
↪→ delay in O(log n)

2n bits

B

A

a bi j

P

P (carry−save)

n bits

4n bits

2n bits

n bits

reduction

PP generation

Multiplication delay O(log n), area O(n2)

52/96

Power Consumption in Fast Multipliers

 0

 10

 20

 30

 40

 50

 60

 70

PP gen. reduc. assim. PP gen. reduc assim.
 0

 10

 20

 30

 40

 50

 60

 70

R
el

at
iv

e
po

w
er

 c
on

su
m

pt
io

n
[%

]

R
el

at
iv

e
de

la
y

[%
]

16%

67%

17% 15%

54%

31%

power delay

• 30% to 70% of redundant transitions (useless)

• place and route steps based on the internal arrival time

• add a pipeline stage

53/96

MAC and FMA

MAC: multiply and accumulate P(t) = A× B + P(t − 1)
A, B are n-bit values and P a m-bit with m >> n (e.g.,
16× 16 + 40 −→ 40 in some DSPs)
FMA: fused multiply and add P = A× B + C where A,B,C and P can be
stored in different registers

BA

P

C

clkset

assimilation

reg

generation
reduction

54/96

Squarer

1 ADD(9 bits)

3 FA + 2 HA

a0 a0

a5 a5

a5

a5 a4

a4

a3

a3 a2

a2 a1

a1

a0

a0

a0

a5

a4

a2

a3

a4a3

a2 a5

a5

a4

a3

a4

a3 a5

a5

a4

a3

a2

a1

a2

a3

a4

a1 a5

a4

a3

a2

a1

a1

a2

a3

a4

a5a0

a5 a0

a3

a2

a1

a0

a1

a2

a3

a4

a4 a0

a2

a1

a0

a1

a2

a3

a3 a0

a1

a0

a1

a2

a2 a0

a0 a1

a1 a0

a5

a4 a5

a4

a1 a0a2 a0a3 a0

a2 a1

a4 a0

a3 a1

a5 a0

a4 a1

a3 a2

a5 a1

a4 a2

a5 a2

a4 a3

a5 a3a5 a4

a5

a4

a3

a2

a1

a4 a0

a3 a1

a5 a0

a4 a1

a3 a2

a5 a1

a4 a2

a5 a2

a4 a3

a5 a3

a2 a1a3 a2

a4 a3

a5 a4a5 a4

a5 a4a5 a4

a0a2 a0a3 a0

a2 a1

a1 a0

a1 a0

a0a2 a0a3 a0

a2 a1

a1 a0

a1 a0

aiai ai=

aiaj ajai aiaj+ = 2

ai

aiaj ai aiaj

aiaj aj

aiaj aiaj

aiaj ai

15 AND + 5 IAND12

1

=

=

=

2 + −

2 + (−)

2 +

+

55/96

Multiplication by Constants (1/2)

Problem: substitute a complete multiplier by an optimized sequence of
shifts and additions and/or subtractions
Example: p = 111463× x

algo. p = 111463× x = #op.

direct (x � 16)+(x � 15)+(x � 13)+(x � 12)+(x � 9) 10 ±
+(x � 8)+(x � 6)+(x � 5)+(x � 2)+(x � 1)+x

CSD (x � 17)−(x � 14)−(x � 12)+(x � 10) 7 ±
−(x � 7)−(x � 5)+(x � 3)−x

Bernstein (((t2 � 2)+x)� 3)−x 5 ±
where
t1 = (((x � 3)−x)� 2)−x
t2 = t1 � 7+t1

Our (t2 � 12)+(t2 � 5)+t1 4 ±
where
t1 = (x � 3)−x
t2 = (t1 � 2)−x

CSD: canonical signed digit, 111463 = 110110011011001112 = 1001010100101010012

56/96

Multiplication by Constants (2/2)

Power savings: 30 up to 60%
operator init. [1] [2] our

DCT 8b 300 94 73 56
DCT 12b 368 100 84 70
DCT 16b 521 129 114 89
DCT 24b 789 212 — 119

Power savings: 10%
operator init. [1] [2] our

8× 8 Had. 56 24 — 24
(16, 11) R.-M. 61 43 31 31
(15, 7) BCH 72 48 47 44

(24, 12, 8) Golay 76 — 47 45

Power savings: up to 40%
operator init. [22] our

8 bits 35 32 24
16 bits 72 70 46

Parks-McClellan filter
remez(25, [0 0.2 0.25 1], [1 1 0 0]).

FIR (1, 5, 5, 1)
DD D

4

4

D D D

4

D D D

4

D

D D D

4

D D

4

E

D

C

B

A

x[t]

x[t]

x[t]

x[t]

x[t]

y[t]

y[t]

y[t]

y[t]

y[t]

z[t]

z’[t]

57/96

Example:
√
x over [1, 2] and µ ≤ 8 sb

Selection of coefficients leading to sparse recodings

p∗ = 1.00076383 + 0.48388463x − 0.071198745x2

p = 1 + (0.100001)2x − (0.0001001)2x2

replace × by a small number of ±

×

x

1 6 4 7
1

+

+ + − − −

p

solution area period #cycles latency power

wo. tools 1.00 1.00 2 1.00 1.00

w. tools 0.59 0.97 1 0.48 0.45

58/96

Modular Exponentiation for RSA

Computation of operations such as : ab mod n

ab = a× a× a× a× . . .× a× a× a︸ ︷︷ ︸
a appears b times

Order of magnitude of exponents: 2size of exponent 22048 . . . 24096

Fast exponentiation principle:

ab = (a2)
b
2 when b is even

= a× (a2)
b−1

2 when b is odd

Least significant bit of the exponent: bit = 0 even and bit = 1 odd

59/96

Square and Multiply Algorithm

i n p u t : a , b , n where b = (bt−1bt−2 . . . b1b0)2

output : ab mod n

r = 1
f o r i from 0 to t − 1 do

i f bi = 1 then
r = r · a mod n

e n d i f
a = a2 mod n

e n d f o r
return r

This is the right to left version (there exists a left to right one)

60/96

Elliptic Curve Cryptography in 1 Slide. . .

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P)

P + Pcu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

Point addition/doubling operations
sequence of finite field operations
DBL: v1 = z2

1 , v2 = x1 − v1, . . .
ADD: w1 = z2

1 ,w2 = z1 × w1, . . .

Fp or F2m operations
operation modulo large prime (Fp)
or irreducible polynomial (F2m)

61/96

Elliptic Curve Cryptography in 1 Slide. . .

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P)

P + Pcu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

E : y 2 = x3 + 4x + 20 over F1009

points: P, Q= (x , y) or (x , y , z) or . . .

Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

Point addition/doubling operations
sequence of finite field operations
DBL: v1 = z2

1 , v2 = x1 − v1, . . .
ADD: w1 = z2

1 ,w2 = z1 × w1, . . .

Fp or F2m operations
operation modulo large prime (Fp)
or irreducible polynomial (F2m)

61/96

Elliptic Curve Cryptography in 1 Slide. . .

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P)

P + Pcu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

E : y 2 = x3 + 4x + 20 over F1009

points: P, Q= (x , y) or (x , y , z) or . . .

coordinates: x , y , z ∈ Fq

Fp, F2m , t : 200–600 bits

k = (kt−1kt−2 . . . k1k0)2 ∈ N

Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

Point addition/doubling operations
sequence of finite field operations
DBL: v1 = z2

1 , v2 = x1 − v1, . . .
ADD: w1 = z2

1 ,w2 = z1 × w1, . . .

Fp or F2m operations
operation modulo large prime (Fp)
or irreducible polynomial (F2m)

61/96

Elliptic Curve Cryptography in 1 Slide. . .

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P)

P + Pcu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

E : y 2 = x3 + 4x + 20 over F1009

points: P, Q= (x , y) or (x , y , z) or . . .

coordinates: x , y , z ∈ Fq

Fp, F2m , t : 200–600 bits

k = (kt−1kt−2 . . . k1k0)2 ∈ N

Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

Point addition/doubling operations
sequence of finite field operations
DBL: v1 = z2

1 , v2 = x1 − v1, . . .
ADD: w1 = z2

1 ,w2 = z1 × w1, . . .

Fp or F2m operations
operation modulo large prime (Fp)
or irreducible polynomial (F2m)

61/96

Elliptic Curve Cryptography in 1 Slide. . .

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P)

P + Pcu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

E : y 2 = x3 + 4x + 20 over F1009

points: P, Q= (x , y) or (x , y , z) or . . .

coordinates: x , y , z ∈ Fq

Fp, F2m , t : 200–600 bits

k = (kt−1kt−2 . . . k1k0)2 ∈ N

Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

Point addition/doubling operations
sequence of finite field operations
DBL: v1 = z2

1 , v2 = x1 − v1, . . .
ADD: w1 = z2

1 ,w2 = z1 × w1, . . .

Fp or F2m operations
operation modulo large prime (Fp)
or irreducible polynomial (F2m)

61/96

Elliptic Curve Cryptography in 1 Slide. . .

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P)

P + Pcu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

E : y 2 = x3 + 4x + 20 over F1009

points: P, Q= (x , y) or (x , y , z) or . . .

coordinates: x , y , z ∈ Fq

Fp, F2m , t : 200–600 bits

k = (kt−1kt−2 . . . k1k0)2 ∈ N

Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

Point addition/doubling operations
sequence of finite field operations
DBL: v1 = z2

1 , v2 = x1 − v1, . . .
ADD: w1 = z2

1 ,w2 = z1 × w1, . . .

Fp or F2m operations
operation modulo large prime (Fp)
or irreducible polynomial (F2m)

61/96

Introduction to Physical Attacks

62/96

Attacks

attack

observation

perturbation

invasive

timing analysis power analysis

EMR analysis

fault injection

probing reverse engineering

theoretical

advanced algorithms

optimized programming

EMR = Electromagnetic radiation

63/96

Attacks

attack

observation

perturbation

invasive

timing analysis power analysis

EMR analysis

fault injection

probing reverse engineering

theoretical

advanced algorithms

optimized programming

EMR = Electromagnetic radiation

63/96

Attacks

attack

observation

perturbation

invasive

timing analysis power analysis

EMR analysis

fault injection

probing reverse engineering

theoretical

advanced algorithms

optimized programming

EMR = Electromagnetic radiation
63/96

Attacks

attack

observation

perturbation

invasive

timing analysis power analysis

EMR analysis

fault injection

probing reverse engineering

theoretical

advanced algorithms

optimized programming

EMR = Electromagnetic radiation
63/96

Attacks

attack

observation

perturbation

invasive

timing analysis power analysis

EMR analysis

fault injection

probing reverse engineering

theoretical

advanced algorithms

optimized programming

EMR = Electromagnetic radiation
63/96

Side Channel Attacks (SCAs) (1/2)

Attack: attempt to find, without any knowledge about the secret:

• the message (or parts of the message)

• informations on the message

• the secret (or parts of the secret)

“Old style” side channel attacks:

+

clic

clac

good value

bad value

64/96

Side Channel Attacks (SCAs) (1/2)

Attack: attempt to find, without any knowledge about the secret:

• the message (or parts of the message)

• informations on the message

• the secret (or parts of the secret)

“Old style” side channel attacks:

+

clic

clac

good value

bad value

64/96

Side Channel Attacks (2/2)

A B

E D

M

k

Ek (M)

k

Dk (Ek (M)) =M

E

measure

k , M???
attack

General principle: measure external parameter(s) on running device in
order to deduce internal informations

65/96

Side Channel Attacks (2/2)

A B

E D

M

k

Ek (M)

k

Dk (Ek (M)) =M

E

measure

k , M???
attack

General principle: measure external parameter(s) on running device in
order to deduce internal informations

65/96

What Should be Measured?

Answer: everything that can “enter” and/or “get out” in/from the device

• power consumption

• electromagnetic radiation

• temperature

• sound

• computation time

• number of cache misses

• number and type of error messages

• ...

The measured parameters may provide informations on:

• global behavior (temperature, power, sound...)

• local behavior (EMR, # cache misses...)

66/96

Power Consumption Analysis

General principle:

1. measure the current i(t) in the cryptosystem

2. use those measurements to “deduce” secret informations

VDD

i(t)

crypto.

R

traces

secret key = 962571. . .

67/96

“Read” the Traces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

• algorithm decomposition into steps
• detect loops
I constant time for the loop iterations
I non-constant time for the loop iterations

Source: [8] Kocher, Jaffe and Jun. Differential Power Analysis, Crypto99

68/96

“Read” the Traces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

• algorithm decomposition into steps
• detect loops
I constant time for the loop iterations
I non-constant time for the loop iterations

Source: [8] Kocher, Jaffe and Jun. Differential Power Analysis, Crypto99

68/96

Differences & External Signature
An algorithm

has a current signature and a time signature

:

r = c0

for i from 1 to n do

if ai = 0 then

r = r+c1

else

r = r×c2

I+ I×
t

I

i
ai

1

0

2

1

3

1

4

0

5

1

6

0

7

0

8

1

T+T×
t

T

69/96

Differences & External Signature
An algorithm has a current signature

and a time signature

:

r = c0

for i from 1 to n do

if ai = 0 then

r = r+c1

else

r = r×c2

I+ I×
t

I

i
ai

1

0

2

1

3

1

4

0

5

1

6

0

7

0

8

1

T+T×
t

T

69/96

Differences & External Signature
An algorithm has a current signature and a time signature:

r = c0

for i from 1 to n do

if ai = 0 then

r = r+c1

else

r = r×c2

I+ I×
t

I

i
ai

1

0

2

1

3

1

4

0

5

1

6

0

7

0

8

1

T+T×
t

T

69/96

Simple Power Analysis (SPA)

Source: [8]

70/96

Simple Power Analysis (SPA)

Source: [8]

70/96

SPA in Practice

General principle:

algorithm

difference in the behavior

difference in the trace

analysis

Methods: interpretation of the differences in

• control signals

• computation time

• operand values

• ...

71/96

SPA in Practice

General principle:

algorithm

difference in the behavior

difference in the trace

analysis

Methods: interpretation of the differences in

• control signals

• computation time

• operand values

• ...

71/96

SPA in Practice

General principle:

algorithm

difference in the behavior

difference in the trace

analysis

Methods: interpretation of the differences in

• control signals

• computation time

• operand values

• ...

71/96

SPA in Practice

General principle:

algorithm

difference in the behavior

difference in the trace

analysis

Methods: interpretation of the differences in

• control signals

• computation time

• operand values

• ...

71/96

SPA in Practice

General principle:

algorithm

difference in the behavior

difference in the trace

analysis

Methods: interpretation of the differences in

• control signals

• computation time

• operand values

• ...

71/96

Limits of the SPA

Example of behavior difference: (activity into a register)

t

t + 1

0000000000000000 0000000000000000

1111111111111111 0000000000000001

Important: a small difference may be evaluated has a noise during the
measurement traces cannot be distinguished

Question: what can be done when differences are too small?

Answer: use statistics over several traces

72/96

Limits of the SPA

Example of behavior difference: (activity into a register)

t

t + 1

0000000000000000 0000000000000000

1111111111111111 0000000000000001

Important: a small difference may be evaluated has a noise during the
measurement traces cannot be distinguished

Question: what can be done when differences are too small?

Answer: use statistics over several traces

72/96

Limits of the SPA

Example of behavior difference: (activity into a register)

t

t + 1

0000000000000000 0000000000000000

1111111111111111 0000000000000001

Important: a small difference may be evaluated has a noise during the
measurement traces cannot be distinguished

Question: what can be done when differences are too small?

Answer: use statistics over several traces

72/96

Limits of the SPA

Example of behavior difference: (activity into a register)

t

t + 1

0000000000000000 0000000000000000

1111111111111111 0000000000000001

Important: a small difference may be evaluated has a noise during the
measurement traces cannot be distinguished

Question: what can be done when differences are too small?

Answer: use statistics over several traces

72/96

Differential Power Analysis (DPA)

cryptosystem

internal state

select bit b to attack

b = 1

b = 0

implementation

power model

power(Hb=1)

power(Hb=0)

measures

comparison

correct hypothesis

73/96

Differential Power Analysis (DPA)

cryptosystem

internal state

select bit b to attack

b = 1

b = 0

implementation

power model

power(Hb=1)

power(Hb=0)

measures

comparison

correct hypothesis

73/96

Differential Power Analysis (DPA)

cryptosystem

internal state

select bit b to attack

b = 1

b = 0

implementation

power model

power(Hb=1)

power(Hb=0)

measures

comparison

correct hypothesis

73/96

Differential Power Analysis (DPA)

cryptosystem

internal state

select bit b to attack

b = 1

b = 0

implementation

power model

power(Hb=1)

power(Hb=0)

measures

comparison

correct hypothesis

73/96

Differential Power Analysis (DPA)

cryptosystem

internal state

select bit b to attack

b = 1

b = 0

implementation

power model

power(Hb=1)

power(Hb=0)

measures

comparison

correct hypothesis

73/96

Differential Power Analysis (DPA)

cryptosystem

internal state

select bit b to attack

b = 1

b = 0

implementation

power model

power(Hb=1)

power(Hb=0)

measures

comparison

correct hypothesis

73/96

Differential Power Analysis (DPA)

cryptosystem

internal state

select bit b to attack

b = 1

b = 0

implementation

power model

power(Hb=1)

power(Hb=0)

measures

comparison

correct hypothesis

73/96

Differential Power Analysis (DPA)

cryptosystem

internal state

select bit b to attack

b = 1

b = 0

implementation

power model

power(Hb=1)

power(Hb=0)

measures

comparison

correct hypothesis

73/96

Differential Power Analysis (DPA) Example

average

correct

incorrect

incorrect

74/96

Template Attack

cryptosystem

internal state

select variable v to attack

v = 0

v = 1

v = 2

implementation

measures

power(v = 0)

power(v = 1)

power(v = 2)

training step

measures

comparison

correct hypothesis

75/96

Template Attack

cryptosystem

internal state

select variable v to attack

v = 0

v = 1

v = 2

implementation

measures

power(v = 0)

power(v = 1)

power(v = 2)

training step

measures

comparison

correct hypothesis

75/96

Template Attack

cryptosystem

internal state

select variable v to attack

v = 0

v = 1

v = 2

implementation

measures

power(v = 0)

power(v = 1)

power(v = 2)

training step

measures

comparison

correct hypothesis

75/96

Template Attack

cryptosystem

internal state

select variable v to attack

v = 0

v = 1

v = 2

implementation

measures

power(v = 0)

power(v = 1)

power(v = 2)

training step

measures

comparison

correct hypothesis

75/96

Template Attack

cryptosystem

internal state

select variable v to attack

v = 0

v = 1

v = 2

implementation

measures

power(v = 0)

power(v = 1)

power(v = 2)

training step

measures

comparison

correct hypothesis

75/96

Template Attack

cryptosystem

internal state

select variable v to attack

v = 0

v = 1

v = 2

implementation

measures

power(v = 0)

power(v = 1)

power(v = 2)

training step

measures

comparison

correct hypothesis

75/96

Template Attack

cryptosystem

internal state

select variable v to attack

v = 0

v = 1

v = 2

implementation

measures

power(v = 0)

power(v = 1)

power(v = 2)

training step

measures

comparison

correct hypothesis
75/96

Electromagnetic Radiation Analysis (1/2)

General principle: use a probe to measure the EMR

circuit

VDD

GND

EMR measurement:

• global EMR with a large probe

• local EMR with a micro-probe

76/96

Electromagnetic Radiation Analysis (1/2)

General principle: use a probe to measure the EMR

circuit

VDD

GND

EMR measurement:

• global EMR with a large probe

• local EMR with a micro-probe

76/96

Electromagnetic Radiation Analysis (1/2)

General principle: use a probe to measure the EMR

circuit

VDD

GND

EMR measurement:

• global EMR with a large probe

• local EMR with a micro-probe

76/96

Electromagnetic Radiation Analysis (2/2)

EMR analysis methods:

• simple electromagnetic analysis: SEMA

• differential electromagnetic analysis: DEMA

Local EMR analysis may be used
to determine internal architecture
details, and then select weak parts of
the circuit for the attack

X-Y table

77/96

Side Channel Attack on ECC

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P)

cu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

• simple power analysis (& variants)

• differential power analysis (& variants)

• horizontal/vertical/templates/. . . attacks

78/96

Side Channel Attack on ECC

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P)

cu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

• simple power analysis (& variants)

• differential power analysis (& variants)

• horizontal/vertical/templates/. . . attacks

78/96

Side Channel Attack on ECC

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P)

cu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

DBL DBL DBL DBL DBL DBL

Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

• simple power analysis (& variants)

• differential power analysis (& variants)

• horizontal/vertical/templates/. . . attacks

78/96

Side Channel Attack on ECC

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P)

cu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

DBL DBL DBL DBL DBL DBLADD ADD

Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

• simple power analysis (& variants)

• differential power analysis (& variants)

• horizontal/vertical/templates/. . . attacks

78/96

Side Channel Attack on ECC

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P)

cu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

DBL DBL DBL DBL DBL DBLADD ADD

0 0 0 1 1 0

Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

• simple power analysis (& variants)

• differential power analysis (& variants)

• horizontal/vertical/templates/. . . attacks

78/96

Side Channel Attack on ECC

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P)

cu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

DBL DBL DBL DBL DBL DBLADD ADD

0 0 0 1 1 0

Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

• simple power analysis (& variants)

• differential power analysis (& variants)

• horizontal/vertical/templates/. . . attacks

78/96

Protections at the Arithmetic Level

79/96

Countermeasure

Principles for preventing attacks:

• embed additional protection blocks

• modify the original circuit into a secured version

• application levels: circuit, architecture, algorithm, protocol. . .

Countermeasures:

• electrical shielding

• detectors, estimators, decoupling

• use uniform computation durations and power consumption

• use detection/correction codes (for fault injection attacks)

• provide a random behavior (algorithms, representation, operations. . .)

• add noise (e.g. masking, useless instructions/computations)

• circuit reconfiguration (algorithms, block location, representation of
values. . .)

80/96

Countermeasure

Principles for preventing attacks:

• embed additional protection blocks

• modify the original circuit into a secured version

• application levels: circuit, architecture, algorithm, protocol. . .

Countermeasures:

• electrical shielding

• detectors, estimators, decoupling

• use uniform computation durations and power consumption

• use detection/correction codes (for fault injection attacks)

• provide a random behavior (algorithms, representation, operations. . .)

• add noise (e.g. masking, useless instructions/computations)

• circuit reconfiguration (algorithms, block location, representation of
values. . .)

80/96

Low-Level Coding and Circuit Activity
Assumptions:
• b is a bit (i.e. b ∈ {0, 1}, logical or mathematical value)
• electrical states for a wire : VDD (logical 1) or GND (logical 0)

Low-level codings of a bit:

b = 0 b = 1

standard GND VDD

dual rail
r0 =VDD
r1 =GND

(1, 0)DR
r0 =GND
r1 =VDD

(0, 1)DR

cycles

b

r0

r1

81/96

Low-Level Coding and Circuit Activity
Assumptions:
• b is a bit (i.e. b ∈ {0, 1}, logical or mathematical value)
• electrical states for a wire : VDD (logical 1) or GND (logical 0)

Low-level codings of a bit:

b = 0 b = 1

standard GND VDD

dual rail
r0 =VDD
r1 =GND

(1, 0)DR
r0 =GND
r1 =VDD

(0, 1)DR

cycles

b

r0

r1

81/96

Low-Level Coding and Circuit Activity
Assumptions:
• b is a bit (i.e. b ∈ {0, 1}, logical or mathematical value)
• electrical states for a wire : VDD (logical 1) or GND (logical 0)

Low-level codings of a bit:

b = 0 b = 1

standard GND VDD

dual rail
r0 =VDD
r1 =GND

(1, 0)DR
r0 =GND
r1 =VDD

(0, 1)DR

cycles

b

r0

r1

81/96

Low-Level Coding and Circuit Activity
Assumptions:
• b is a bit (i.e. b ∈ {0, 1}, logical or mathematical value)
• electrical states for a wire : VDD (logical 1) or GND (logical 0)

Low-level codings of a bit:

b = 0 b = 1

standard GND VDD

dual rail
r0 =VDD
r1 =GND

(1, 0)DR
r0 =GND
r1 =VDD

(0, 1)DR

cycles

b

r0

r1

81/96

Low-Level Coding and Circuit Activity
Assumptions:
• b is a bit (i.e. b ∈ {0, 1}, logical or mathematical value)
• electrical states for a wire : VDD (logical 1) or GND (logical 0)

Low-level codings of a bit:

b = 0 b = 1

standard GND VDD

dual rail
r0 =VDD
r1 =GND

(1, 0)DR
r0 =GND
r1 =VDD

(0, 1)DR

cycles

b

r0

r1

81/96

Circuit Logic Style
Countermeasure principles: uniformize circuit activity and exclusive
coding

Solution based on precharge logic and dual-rail coding:

cycles

pc

r0

r1

evaluation

b = 0

precharge

invalid

evaluation

b = 0

precharge

invalid

evaluation

b = 1

precharge

invalid

Solution based on validity line and dual-rail coding:

r1

r0

valid

Important overhead: silicon area and local storage (registers)

82/96

Circuit Logic Style
Countermeasure principles: uniformize circuit activity and exclusive
coding

Solution based on precharge logic and dual-rail coding:

cycles

pc

r0

r1

evaluation

b = 0

precharge

invalid

evaluation

b = 0

precharge

invalid

evaluation

b = 1

precharge

invalid

Solution based on validity line and dual-rail coding:

r1

r0

valid

Important overhead: silicon area and local storage (registers)

82/96

Circuit Logic Style
Countermeasure principles: uniformize circuit activity and exclusive
coding

Solution based on precharge logic and dual-rail coding:

cycles

pc

r0

r1

evaluation

b = 0

precharge

invalid

evaluation

b = 0

precharge

invalid

evaluation

b = 1

precharge

invalid

Solution based on validity line and dual-rail coding:

r1

r0

valid

Important overhead: silicon area and local storage (registers)
82/96

Countermeasure: Architecture

Increase internal parallelism:

• replace one fast but big operator

• by several instances of a small but slow one

ar
ch

i.
A

op

ar
ch

i.
B

op1

op2

op3

op4

time

op op op op op op op op

op

op

op

op

op

op

op

op

83/96

Protected Multipliers

Unprotected

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

#
tr

a
n

s
it
io

n
s

cycles

Mastrovito 233

 200 225 250
cycles

Protected

Overhead:
Area/time < 10 %

References:
PhD D. Pamula [9]
Articles: [12], [11],
[10]

84/96

Protected Multipliers

Unprotected

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

#
tr

a
n

s
it
io

n
s

cycles

Mastrovito 233

 200 225 250
cycles

Protected

Overhead:
Area/time < 10 %

References:
PhD D. Pamula [9]
Articles: [12], [11],
[10]

84/96

Protected (Old) Accelerator

 0
 100
 200
 300

 0 50 100 150 200 250 300 350

#
tr

a
n

s
it
.

cycles

DBL operation
Mastrovito
Unprotected
Activity trace

0.00
0.02
0.04
0.06
0.08

c
u

rr
e

n
t

[m
A

]

DBL operation
Mastrovito
Unprotected
Current measures

 0
 100
 200
 300

#
tr

a
n

s
it
.

DBL operation
Mastrovito
Protected
Activity trace

0.00
0.04
0.08
0.12
0.16

c
u

rr
e

n
t

[m
A

]

DBL operation
Mastrovito
Protected
Current measures

 0
 100
 200
 300

#
tr

a
n

s
it
.

ADD operation
Mastrovito
Protected
Activity trace

Warning: old dedicated accelerator (similar behavior is expected for our new one)
85/96

Circuit-Level Protections for Arithmetic Operators

References: [5] and [6]

86/96

Arithmetic Level Countermeasures

Redundant number system =

• a way to improve the performance of some operations

• a way to represent a value with different representations

k

R1(k)

[R1(k)]P

R2(k)

[R2(k)]P

R3(k)

[R3(k)]P

R4(k)

[R4(k)]P

R5(k)

[R5(k)]P

R6(k)

[R6(k)]P

R7(k)

[R7(k)]P

. . .

. . .

Important property: ∀i [Ri (k)]P = [k]P

Proposed solution: use random redundant representations of k

87/96

Double-Base Number System
Standard radix-2 representation:

k =
t−1∑
i=0

ki 2
i = kt−1 kt−2

. . . k2 k1 k0 t explicit digits

Digits: ki ∈ {0, 1}, typical size: t ∈ {160, . . . , 600}

Double-Base Number System (DBNS):

k =
n−1∑
j=0

kj 2
aj 3bj =

aj , bj ∈ N, kj ∈ {1} or kj ∈ {−1, 1}, size n ≈ log t

DBNS is a very redundant and sparse representation: 1701 = (11010100101)2

1701 = 243 + 1458 = 2035 + 2136 = (1, 0, 5), (1, 1, 6)
= 1728− 27 = 2633 − 2033 = (1, 6, 3), (−1, 0, 3)
= 729 + 972 = 2036 + 2235 = (1, 0, 6), (1, 2, 5)
. . .

88/96

Double-Base Number System
Standard radix-2 representation:

k =
t−1∑
i=0

ki 2
i = kt−1

2t−1

kt−2

2t−2

. . .

. . .

k2

22

k1

21

k0

20

t explicit digits

implicit weights

Digits: ki ∈ {0, 1}, typical size: t ∈ {160, . . . , 600}

Double-Base Number System (DBNS):

k =
n−1∑
j=0

kj 2
aj 3bj =

aj , bj ∈ N, kj ∈ {1} or kj ∈ {−1, 1}, size n ≈ log t

DBNS is a very redundant and sparse representation: 1701 = (11010100101)2

1701 = 243 + 1458 = 2035 + 2136 = (1, 0, 5), (1, 1, 6)
= 1728− 27 = 2633 − 2033 = (1, 6, 3), (−1, 0, 3)
= 729 + 972 = 2036 + 2235 = (1, 0, 6), (1, 2, 5)
. . .

88/96

Double-Base Number System
Standard radix-2 representation:

k =
t−1∑
i=0

ki 2
i = kt−1

2t−1

kt−2

2t−2

. . .

. . .

k2

22

k1

21

k0

20

t explicit digits

implicit weights

Digits: ki ∈ {0, 1}, typical size: t ∈ {160, . . . , 600}

Double-Base Number System (DBNS):

k =
n−1∑
j=0

kj 2
aj 3bj =

aj , bj ∈ N, kj ∈ {1} or kj ∈ {−1, 1}, size n ≈ log t

DBNS is a very redundant and sparse representation: 1701 = (11010100101)2

1701 = 243 + 1458 = 2035 + 2136 = (1, 0, 5), (1, 1, 6)
= 1728− 27 = 2633 − 2033 = (1, 6, 3), (−1, 0, 3)
= 729 + 972 = 2036 + 2235 = (1, 0, 6), (1, 2, 5)
. . .

88/96

Double-Base Number System
Standard radix-2 representation:

k =
t−1∑
i=0

ki 2
i = kt−1

2t−1

kt−2

2t−2

. . .

. . .

k2

22

k1

21

k0

20

t explicit digits

implicit weights

Digits: ki ∈ {0, 1}, typical size: t ∈ {160, . . . , 600}

Double-Base Number System (DBNS):

k =
n−1∑
j=0

kj 2
aj 3bj =

kn−1

an−1

bn−1

. . .

. . .

. . .

k1

a1

b1

k0

a0

b0

n (2, 3)−terms

explicit “digits”

explicit ranks

aj , bj ∈ N, kj ∈ {1} or kj ∈ {−1, 1}, size n ≈ log t

DBNS is a very redundant and sparse representation: 1701 = (11010100101)2

1701 = 243 + 1458 = 2035 + 2136 = (1, 0, 5), (1, 1, 6)
= 1728− 27 = 2633 − 2033 = (1, 6, 3), (−1, 0, 3)
= 729 + 972 = 2036 + 2235 = (1, 0, 6), (1, 2, 5)
. . .

88/96

Double-Base Number System
Standard radix-2 representation:

k =
t−1∑
i=0

ki 2
i = kt−1

2t−1

kt−2

2t−2

. . .

. . .

k2

22

k1

21

k0

20

t explicit digits

implicit weights

Digits: ki ∈ {0, 1}, typical size: t ∈ {160, . . . , 600}

Double-Base Number System (DBNS):

k =
n−1∑
j=0

kj 2
aj 3bj =

kn−1

an−1

bn−1

. . .

. . .

. . .

k1

a1

b1

k0

a0

b0

n (2, 3)−terms

explicit “digits”

explicit ranks

aj , bj ∈ N, kj ∈ {1} or kj ∈ {−1, 1}, size n ≈ log t

DBNS is a very redundant and sparse representation: 1701 = (11010100101)2

1701 = 243 + 1458 = 2035 + 2136 = (1, 0, 5), (1, 1, 6)
= 1728− 27 = 2633 − 2033 = (1, 6, 3), (−1, 0, 3)
= 729 + 972 = 2036 + 2235 = (1, 0, 6), (1, 2, 5)
. . .

88/96

Randomized DBNS Recoding of the Scalar k

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P) TPL(P)

cu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

On-the-fly DBNS random recoding for the scalar k
randomly recode windows of the scalar k on-the-fly:
1 + 2� 3 1 + 3� 22 1 + 23 � 32 . . .
control number of reductions (←) and expansions (→)

Point tripling operation
Q = TPL(P) = P + P + P

k ki

block time

recoding rulespossible rules

89/96

Randomized DBNS Recoding of the Scalar k

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P) TPL(P)

cu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

On-the-fly DBNS random recoding for the scalar k
randomly recode windows of the scalar k on-the-fly:
1 + 2� 3 1 + 3� 22 1 + 23 � 32 . . .
control number of reductions (←) and expansions (→)

Point tripling operation
Q = TPL(P) = P + P + P

k ki

block time

recoding rulespossible rules

recoded ki (,ki+1)random choice

89/96

Randomized DBNS Recoding of the Scalar k

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P) TPL(P)

cu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

On-the-fly DBNS random recoding for the scalar k
randomly recode windows of the scalar k on-the-fly:
1 + 2� 3 1 + 3� 22 1 + 23 � 32 . . .
control number of reductions (←) and expansions (→)

Point tripling operation
Q = TPL(P) = P + P + P

k ki

block time

recoding rulespossible rules

recoded ki (,ki+1)random choice

DBNS is redundant ⇒ security ↗
DBNS is sparse ⇒ 20–30 % speed ↗

Ref: [3] Chabrier, Pamula & Tisserand.
Asilomar 2009

89/96

References

90/96

References I

Surveys: Proc. IEEE 2006 [1], Proc. IEEE 2012 [2], IEEE TVLSI 2013 [7]

[1] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan.
The sorcerer’s apprentice guide to fault attacks.
Proceedings of the IEEE, 94(2):370–382, February 2006.

[2] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache.
Fault injection attacks on cryptographic devices: Theory, practice, and countermeasures.
Proceedings of the IEEE, 100(11):3056–3076, November 2012.

[3] T. Chabrier, D. Pamula, and A. Tisserand.
Hardware implementation of DBNS recoding for ECC processor.
In Proc. 44rd Asilomar Conference on Signals, Systems and Computers, pages 1129–1133, Pacific Grove, California, U.S.A.,
November 2010. IEEE.

[4] T. Chabrier and A. Tisserand.
On-the-fly multi-base recoding for ECC scalar multiplication without pre-computations.
In A. Nannarelli, P.-M. Seidel, and P. T. P. Tang, editors, Proc. 21st Symposium on Computer Arithmetic (ARITH), pages
219–228, Austin, TX, U.S.A, April 2013. IEEE Computer Society.

[5] J. Chen, A. Tisserand, E. M. Popovici, and S. Cotofana.
Robust sub-powered asynchronous logic.
In J. Becker and M. R. Adrover, editors, Proc. 24th International Workshop on Power and Timing Modeling, Optimization
and Simulation (PATMOS), pages 1–7, Palma de Mallorca, Spain, September 2014. IEEE.

[6] J. Chen, A. Tisserand, E. M. Popovici, and S. Cotofana.
Asynchronous charge sharing power consistent Montgomery multiplier.
In J. Sparso and E Yahya, editors, Proc. 21st IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 132–138, Mountain View, California, USA, May 2015.

[7] D. Karaklajic, J.-M. Schmidt, and I. Verbauwhede.
Hardware designer’s guide to fault attacks.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21(12):2295–2306, December 2013.

91/96

References II

[8] P. C. Kocher, J. Jaffe, and B. Jun.
Differential power analysis.
In Proc. Advances in Cryptology (CRYPTO), volume 1666 of LNCS, pages 388–397. Springer, August 1999.

[9] D. Pamula.
Arithmetic Operators on GF(2m) for Cryptographic Applications: Performance - Power Consumption - Security Tradeoffs.
Phd thesis, University of Rennes 1 and Silesian University of Technology, December 2012.

[10] D. Pamula, E. Hrynkiewicz, and A. Tisserand.

Analysis of GF(2233) multipliers regarding elliptic curve cryptosystem applications.
In 11th IFAC/IEEE International Conference on Programmable Devices and Embedded Systems (PDeS), pages 271–276,
Brno, Czech Republic, May 2012.

[11] D. Pamula and A. Tisserand.
GF(2m) finite-field multipliers with reduced activity variations.
In 4th International Workshop on the Arithmetic of Finite Fields, volume 7369 of LNCS, pages 152–167, Bochum, Germany,
July 2012. Springer.

[12] D. Pamula and A. Tisserand.
Fast and secure finite field multipliers.
In Proc. 18th Euromicro Conference on Digital System Design (DSD), pages 653–660, Madeira, Portugal, August 2015.

[13] J. Proy, N. Veyrat-Charvillon, A. Tisserand, and N. Meloni.
Full hardware implementation of short addition chains recoding for ECC scalar multiplication.
In Actes Conférence d’informatique en Parallélisme, Architecture et Système (ComPAS), Lille, France, June 2015.

92/96

Good Books (in French)

Micro et nano-électronique

Bases, Composants, Circuits

Hervé Fanet

2006

Dunod

ISBN: 2–10–049141–5

Arithmétique des ordinateurs

Jean-Michel Muller

1989

Masson

ISBN: 2–225–81689–1

(web version)

93/96

Good Books (in English)

CMOS VLSI Design

A Circuits and Systems Perspective

Neil Weste and David Harris

3rd edition, 2004

Addison Wesley

ISBN: 0–321–14901–7

Power Analysis Attacks

Revealing the Secrets of Smart Cards

Stefan Mangard, Elisabeth Oswald and

Thomas Popp

2007

Springer

ISBN:978-0-387-30857-9

94/96

Good Books (in English)

Digital Arithmetic

Milos Ercegovac and Tomas Lang

2003

Morgan Kaufmann

ISBN: 1–55860–798–6

95/96

Thank you!

Contact (will change in a few months):

• mailto:arnaud.tisserand@univ-ubs.fr

• http://www-labsticc.univ-ubs.fr/~tisseran

96/96

mailto:arnaud.tisserand@univ-ubs.fr
http://www-labsticc.univ-ubs.fr/~tisseran

	Computer Arithmetic
	Preliminaries on Digital Circuits
	Addition & Multiplication
	Representations
	Addition
	Fast Addition
	Redundant Adders
	Carry-Save Addition
	Basic Multipliers
	Fast Multipliers
	Squarer
	Multiplication by Constants

	Introduction to Physical Attacks
	Protections at the Arithmetic Level
	References

