An introduction to combinatorics

V. Berthé

IRIF-CNRS-Université Paris

An overview

- A brief overview
- Generating functions and a symbolic dictionary
- Combinatorics on words
- A detour to quasicrystals and tilings
- Analysis of Euclid's algorithm

Image from G. Berry, Cours au collège de France

- Algorithmique, combinatoire, graphes, automates, systèmes dynamiques discrets.
- Calcul formel et calcul certifié, arithmétique des ordinateurs, codage et cryptographie.
- Logique, complexité algorithmique et structurelle, sémantique, modèles de calcul.
- Programmation, génie logiciel, vérification et preuves.
- Recherche opérationnelle, aide à la décision, optimisation discrète et continue, satisfaction de contraintes, SAT.
- Systèmes de production, logistique, ordonnancement.
- Intelligence artificielle, système multi-agent, ingénierie / représentation et traitement des connaissances, représen traitement de l'incertitude, formalisation des raisonnements, fusion information.
- Environnements informatiques pour l'apprentissage humain.
- Sûreté de fonctionnement, sécurité informatique, protection de la vie privée, réseaux sociaux.
- Réseaux, télécommunications, systèmes distribués, réseaux de capteurs.
- Internet du futur, intelligence ambiante.
- Calcul distribué, grilles, cloud, calcul à haute performance, parallélisme, architecture et compilation, infrastructure
- Cognition, modélisation pour la médecine, neurosciences computationnelles.
- Systèmes d'informations, web sémantique, masses de données, fouille de données, base de données, gestion de d d'informations, apprentissage.
- Bioinformatique.

Section 06, CNRS

What is combinatorics?

- Enumerative combinatorics
- Analytic combinatorics
- Algebraic combinatorics
- Probabilistic combinatorics
- Bijective combinatorics
- Extremal combinatorics
- Combinatorics on words
- Graph theory

What is combinatorics?

- Enumerative combinatorics (permutations, partitions, maps, etc.)
- Analytic combinatorics (complex analysis)
- Algebraic combinatorics
- Probabilistic combinatorics
- Bijective combinatorics
- Extremal combinatorics
- Combinatorics on words
- Graph theory
- Geometric combinatorics
- Topological combinatorics
- Arithmetic combinatorics

What is combinatorics?

- Enumerative combinatorics
- Analytic combinatorics
- Algebraic combinatorics
- Probabilistic combinatorics
- Bijective combinatorics
- Extremal combinatorics
- Combinatorics on words
- Graph theory
- Partition theory, Design theory, Order theory, Matroid theory
- Combinatorial optimization, Coding theory, Discrete and computational geometry, Combinatorics and dynamical systems
- Combinatorics and physics

Some influential people in France

- M.-P. Schützenberger
- M. Nivat
- P. Flajolet
- X. Viennot
- M. Bousquet-Mélou

Images from Wikipedia and G. Chapuy

On enumerative combinatorics

Most of the questions that we study start like this: given a set of discrete objects, equipped with a notion of size (say permutations on n elements), how many objects of size n are there? Of course you do not want a number for particular values of n but a formula or, more realistically, a characterisation (e.g. a recurrence relation) valid for general n.

Sometimes, more important than getting a counting formula for a certain problem is the fact that to arrive at such a formula requires information about the combinatorial structure under study. Hence, counting is sometimes just a pretext and the important thing is to understand, or discover, a structure in some discrete objects.
M. Bousquet-Mélou, EMS Newsletter 2017.

On enumerative combinatorics

The objects that we (try to) count come from various branches of mathematics, including probability (of course the interaction with this area is particularly strong via discrete probability), algebra (e.g. in connection with representations of classical groups and algebras) and mathematical physics (via the study of discrete models, like the famous Ising model).
M. Bousquet-Mélou, EMS Newsletter 2017.

On enumerative combinatorics

Most French combinatorialists work in computer science departments. There are several reasons for that, partly historical but mostly scientific: there is no real boundary between some parts of theoretical computer science (e.g. the study of formal languages) and discrete mathematics. There is also a strong interaction between enumerative combinatorics and the study of the complexity of algorithms, as launched a long time ago by Don Knuth and pursued in France by Philippe Flajolet and his school. The rough idea is that in order to understand the complexity of an algorithm, one has to determine how many entries of a given length get processed in a given time - a well-posed bivariate counting problem.
M. Bousquet-Mélou, EMS Newsletter 2017.

Alea

- Study of discrete random structures coming from various disciplines: fundamental computer science and algorithmics, discrete mathematics and probability, statistical physics...
- Objects: trees, words, permutations, paths, cellular automata, etc.
- Methods: enumeration, asymptotic properties and analytic combinatorics, probabilistic properties, random generation...

Domaine un peu paradoxal, la combinatoire se présente comme

- simple et complexe
- pauvre et riche
- facile et difficile
- pure et appliquée

Elle occupe aujourd'hui une place quasi-centrale en mathématiques en particulier à cause de des interactions
algèbre, théorie des nombres, probabilités, topologie, géométrie algébrique
Informatique, mathématiques, physique (statistique)
Extrait de la description du cours au collège de France de Timothy Gowers, 2021.

Generating functions

Generating functions are used to describe families of combinatorial objects. Let \mathcal{C} denote the family of objects to count.

A combinatorial class is a set \mathcal{C}, equipped with a size function
 is finite. Let c_{n} stand for its cardinality. The generating function of \mathcal{C} is the formal power series

$$
C(x)=\sum_{n=0}^{\infty} c_{n} x^{n} .
$$

There are various natural operations on generating functions such as addition, multiplication, differentiation, etc., which have a combinatorial meaning.

A symbolic dictionary

The generating function of \mathcal{C} is the formal power series

$$
C(x)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

where c_{n} is the number of elements of size n

A symbolic dictionary

The generating function of \mathcal{C} is the formal power series

$$
C(x)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

where c_{n} is the number of elements of size n

- Disjoint union \longleftrightarrow addition
- Product \longleftrightarrow pairs $\mathcal{C}=\mathcal{A} \times \mathcal{B}$ with $|(a, b)|=|a|+|b|$
- Sequence $\mathcal{C}=\cup_{k \geq 0} \mathcal{A}^{k} c=a_{1} \cdots a_{k}$

$$
\longleftrightarrow C(x)=\frac{1}{1-A(x)}=\sum_{k \geq 0} A(x)^{k} \quad\left(\mathcal{A}_{0}=\emptyset\right)
$$

- Differentiation \longleftrightarrow expectation

A symbolic dictionary

The generating function of \mathcal{C} is the formal power series

$$
C(x)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

where c_{n} is the number of elements of size n

- Disjoint union \longleftrightarrow addition
- Product \longleftrightarrow pairs $\mathcal{C}=\mathcal{A} \times \mathcal{B}$ with $|(a, b)|=|a|+|b|$
- Sequence $\mathcal{C}=\cup_{k \geq 0} \mathcal{A}^{k} c=a_{1} \cdots a_{k}$

$$
\longleftrightarrow C(x)=\frac{1}{1-A(x)}=\sum_{k \geq 0} A(x)^{k} \quad\left(\mathcal{A}_{0}=\emptyset\right)
$$

- Differentiation \longleftrightarrow expectation

Example: Let \mathcal{C} be the set of all finite binary words, with size given by the length. Then

$$
A(x)=2 x, C(x)=\frac{1}{1-A(x)}=\frac{1}{1-2 x}, \quad c_{n}=2^{n}
$$

Counting binary trees

Let \mathcal{C}_{n} be the number of binary trees that have n binary branching nodes, and hence $n+1$ external nodes.
A tree is a connected graph without cycle. A (complete) binary rooted plane tree is such that:

- there is a distinguished vertex, called the root;
- the tree is drawn from the root, so there is a natural genealogical structure, and in particular, a notion of children of a vertex;
- the children of every vertex are ordered from left to right.
- A complete binary tree is such that all vertices have arity 0 or 2.
https://www.irif.fr/~chapuy/
/chapuyCombinatoricsNotesMPRI.pdf

Counting binary trees

Let \mathcal{C}_{n} be the number of binary trees that have n binary branching nodes, and hence $\mathrm{n}+1$ external nodes.

$$
c_{0}=1, c_{1}=1, c_{2}=2, c_{3}=5, c_{4}=14, c_{5}=42
$$

6
AN INVITATION TO ANALYTIC COMBINATORICS

Figure 0.3. The collection of binary trees with $n=0,1,2,3$ binary nodes, with respective cardinalities $1,1,2,5$.

From THE book Analytic combinatorics [Flajolet-Sedgewick]

Counting binary trees

Let \mathcal{C}_{n} be the number of binary trees that have n binary branching nodes, and hence $\mathrm{n}+1$ external nodes.

Counting binary trees

Let \mathcal{C}_{n} be the number of binary trees that have n binary branching nodes, and hence $\mathrm{n}+1$ external nodes.

$$
\begin{array}{cc}
\mathcal{C}=\square \cup(\mathcal{C}, \bullet, \mathcal{C}) & C(z)=\sum_{n \geq 0} c_{n} z^{n} \\
C(z)=1+z C(z)^{2} & C(z)=\frac{1-\sqrt{1-4 z}}{2 z} \\
c_{n}=\frac{1}{n+1}\binom{2 n}{n} & c_{n} \sim \frac{1}{\sqrt{\pi}}(1 / 4)^{n} n^{-3 / 2}
\end{array}
$$

These numbers are known as the Catalan numbers.

From singularities to asymptotic combinatorics

Let $Q(x)$ be a polynomial with complex coefficients. Write

$$
Q(x)=\prod_{i=1}^{k}\left(1-\gamma_{i} x\right)^{d_{i}}
$$

with distinct γ_{i} 's.
Let

$$
A(x)=\frac{P(x)}{Q(x)}=\sum_{n} a_{n} x^{n}
$$

be a formal power series, with P polynomial with $\operatorname{deg}(P)<\operatorname{deg}(Q)$. Then, for all n

$$
a_{n}=R_{1}(n) \gamma_{1}^{n}+\cdots+R_{k}(n) \gamma_{k}^{n}
$$

where R_{1}, \cdots, R_{k} are polynomials with $\operatorname{deg} R_{i}<d_{i}$.

Combinatorics on words

Combinatorics on words

A wide field of applications: automata theory, bio-informatics, computational biology, algorithms on strings, text compression, number theory, Schrödinger operators.

Among the main questions: existence of patterns (e.g., squarefree words), repetitions and regularities, counting configurations, statistical properties.

[Lothaire, Algebraic combinatorics on words, N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics
CANT Combinatorics, Automata and Number theory]

Unavoidable regularities and patterns

The story starts with the work of A. Thue (1863-1922) with the existence of square-free infinite words.

Thue was interested in finding long sequences with few repetitions.

A word is square-free if it avoids the pattern $x x$.

Squares cannot be avoided on infinite binary words.
$a a, a b, b a, b b$
$a b a, b a b$
abaa, $a b a b, b a b a, ~ b a b b$

The Thue-Morse substitution

Overlaps can be avoided on a binary alphabet. Consider the Thue-Morse substitution

$$
\begin{aligned}
& \sigma: a \rightarrow a b, b \rightarrow b a \\
& \sigma(a)=a b \\
& \sigma^{2}(a)=a b b a \\
& \sigma^{3}(a)=a b b a b a a b
\end{aligned}
$$

The infinite word $\sigma^{\infty}(a)$ is overlap-free: it has no factor of the form

uvuvu

for some words u, v with u nonempty

$$
\sigma^{\infty}(a)=a b b a b a a b b a a b a b b a b a a b a b b a \cdots
$$

The word t derived from the Thue-Morse by the inverse morphism $A \rightarrow a b b, B \rightarrow a b, C \rightarrow a$ is square-free

$$
t=A B C A C B A B C B A \cdots
$$

$$
\sigma^{\infty}(a)=a b b a b a a b b a a b a b b a b a a b a b b a \cdots
$$

$\sigma^{\infty} a=a b b|a b| a|a b b| a|a b| a b b|a b| a|a b| a b b \mid a \cdots$
The word t derived from the Thue-Morse by the inverse morphism $A \rightarrow a b b, B \rightarrow a b, C \rightarrow a$ is square-free

$t=A B C A C B A B C B A \cdots$

On Dejean's conjecture

- A repetition in a word w is a pair of words (p, q) such that $p q$ is a factor of w, p is nonempty, and q is a prefix of $p q$.
- The exponent of a repetition (p, q) is $\frac{|p q|}{|q|}$.
- Squares are repetitions of exponent 2.
- A word is x-free if it does not contain a repetition of exponent y with $y \geq x$.

On Dejean's conjecture

- A repetition in a word w is a pair of words (p, q) such that $p q$ is a factor of w, p is nonempty, and q is a prefix of $p q$.
- The exponent of a repetition (p, q) is $\frac{|p q|}{|q|}$.
- Squares are repetitions of exponent 2.
- A word is x-free if it does not contain a repetition of exponent y with $y \geq x$.
- For an integer $k \geq 2$, the repetition threshold $R(k)$ for k letters is the infimum over the set of x such that there exists an infinite x-free word over a k-letter alphabet.

On Dejean's conjecture

- A repetition in a word w is a pair of words (p, q) such that $p q$ is a factor of w, p is nonempty, and q is a prefix of $p q$.
- The exponent of a repetition (p, q) is $\frac{|p q|}{|q|}$.
- Squares are repetitions of exponent 2.
- A word is x-free if it does not contain a repetition of exponent y with $y \geq x$.
- For an integer $k \geq 2$, the repetition threshold $R(k)$ for k letters is the infimum over the set of x such that there exists an infinite x-free word over a k-letter alphabet.
- Dejean's conjecture has been proven in 2011 [Rao, 2011) and (Currie and Rampersad, 2011]: the repetition treshold, i.e., the largest avoidable fractional power in an infinite word on k letters is $k /(k-1)$.

$$
R(2)=2, R(3)=7 / 4, R(4)=7 / 5, R(k)=\frac{k}{k-1}, k \geq 5
$$

Word combinatorics

Let \mathcal{A} be a finite alphabet and let $u \in \mathcal{A}^{\mathbb{N}}$ be an infinite word

$$
\begin{gathered}
u=a b a a b a b a a b a a b a b a a b a b a a b \cdots \\
u=a b a a b a b a a b \underbrace{\text { aa }} b a b a a b a b a a b \cdots
\end{gathered}
$$

$a a$ is a factor, $b b$ is not a factor

Toward symbolic dynamics

Let \mathcal{A} be a finite alphabet and let $u \in \mathcal{A}^{\mathbb{N}}$ be an infinite word

$$
u=a b a a b a b a a b a a b a b a a b a b a a b \cdot \cdots
$$

$u=a b a a b a b a a b \underbrace{\text { aa }}$ babaababaab \ldots
$a a$ is a factor, $b b$ is not a factor

The shift maps $u=\left(u_{n}\right)_{n \in \mathbb{N}}$ to $\left(u_{n+1}\right)_{n \in \mathbb{N}}$
$u=a b a a b a b a a b a a b a b a a b a b a a b \cdots$
$S(u)=$ baababaabaababaababaab \cdots

Discrete dynamical system

A discrete dynamical system is given by a map T acting on a set X

$$
T: X \rightarrow X
$$

Discrete stands for discrete time The map T is the law of time evolution

We consider orbits/trajectories of points of X under the action of the map T

$$
\left\{T^{n} x \mid n \in \mathbb{N}\right\}
$$

Discrete dynamical system

A discrete dynamical system is given by a map T acting on a set X

$$
T: X \rightarrow X
$$

Discrete stands for discrete time The map T is the law of time evolution

We consider orbits/trajectories of points of X under the action of the map T

$$
\left\{T^{n} x \mid n \in \mathbb{N}\right\}
$$

How well are the orbits distributed?

A trajectory for $T: X \rightarrow X$

© Timo Jolivet

A trajectory for $T: X \rightarrow X$

© Timo Jolivet

A trajectory for $T: X \rightarrow X$

© Timo Jolivet

A trajectory for $T: X \rightarrow X$

© Timo Jolivet

A trajectory for $T: X \rightarrow X$

© Timo Jolivet

A trajectory for $T: X \rightarrow X$

© Timo Jolivet

A trajectory for $T: X \rightarrow X$

© Timo Jolivet

A trajectory for $T: X \rightarrow X$

© Timo Jolivet

A trajectory for $T: X \rightarrow X$

© Timo Jolivet

What's the point of this formalization?

- The mathematical formalization of discrete dynamical system offers the framework of ergodic theory

What's the point of this formalization?

- The mathematical formalization of discrete dynamical system offers the framework of ergodic theory
- Topological dynamics describes the qualitative/topological behaviour of trajectories The map T is continuous and the space X is compact
- Ergodicity describes the long term statistical behaviour of orbits
The space X is endowed with a probability measure and T is measurable (X, T, \mathcal{B}, μ)

Ergodic theorem

Ergodic theorem

Among the first N points of the orbit of x, how many of them enter B ?

How often do they visit B ?

Ergodic theorem

Let 1_{B} be the characteristic function of B
Among the first N points of the orbit of x, how many of them enter B ? $\quad \sum_{0 \leq n<N} 1_{B}\left(T^{n} x\right)$
How often do they visit B ? $\quad \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{0 \leq n<N} 1_{B}\left(T^{n} x\right)$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{0 \leq n<N} 1_{B}\left(T^{n} x\right)=\mu(P) \quad \text { a.e. } x
$$

Ergodic theorem

We are given a dynamical system (X, T, \mathcal{B}, μ) with $T: X \rightarrow X$

- Average time values: one particle over the long term
- Average space values: all particles at a particular instant Ergodicity

$$
\begin{gathered}
\mu(B)=\mu\left(T^{-1} B\right) \quad T \text {-invariance } \\
T^{-1} B=B \Longrightarrow \mu(B)=0 \text { or } 1 \text { ergodicity }
\end{gathered}
$$

Ergodic theorem space average $=$ time average

$$
f \in L_{1}(\mu) \quad \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{0 \leq n<N} f\left(T^{n} x\right)=\int f d \mu \quad \text { a.e. }
$$

Numeration dynamics

Numeration dynamical systems are simple algorithms that produce digits in classical representation systems

- Decimal expansions

$$
T:[0,1] \rightarrow[0,1], x \mapsto 10 x-[10 x]=\{10 x\}
$$

Numeration dynamics

Numeration dynamical systems are simple algorithms that produce digits in classical representation systems

- Decimal expansions

$$
T:[0,1] \rightarrow[0,1], x \mapsto 10 x-[10 x]=\{10 x\}
$$

$$
\begin{gathered}
x_{1}=T(x)=10 x-[10 x]=10 x-a_{1} \\
x=\frac{a_{1}}{10}+\frac{x_{1}}{10} \\
x_{2}=T\left(x_{1}\right)=T^{2}(x) \quad a_{2}=\lfloor 10 T(x)\rfloor \\
x=\frac{a_{1}}{10}+\frac{a_{2}}{10^{2}}+\frac{x_{2}}{10^{2}}=\sum_{i=1}^{\infty} a_{i} 10^{-i}
\end{gathered}
$$

Numeration dynamics

Numeration dynamical systems are simple algorithms that produce digits in classical representation systems

- Decimal expansions

$$
T:[0,1] \rightarrow[0,1], x \mapsto 10 x-[10 x]=\{10 x\}
$$

The map T produces the digits

$$
a_{n}=\left\lfloor 10 T^{n-1}(x)\right\rfloor
$$

The action of T can be seen as a shift on the sequence of digits

$$
x \sim a_{1} a_{2} a_{3} a_{4} \cdots \quad T(x) \sim a_{2} a_{3} a_{4} \cdots
$$

Multiplication by 10 on $[0,1]$

$$
\begin{aligned}
& X=[0,1] \quad T: x \mapsto 10 x(\bmod 1) \\
& \mathcal{P}=\left\{\left[\frac{i}{10}, \frac{i+1}{10}[: 0 \leq i \leq 9\}\right.\right.
\end{aligned}
$$

© Timo Jolivet

Multiplication by 10 on $[0,1]$

$$
\begin{aligned}
& X=[0,1] \quad T: x \mapsto 10 \times(\bmod 1) \\
& \mathcal{P}=\left\{\left[\frac{i}{10}, \frac{i+1}{10}[: 0 \leq i \leq 9\}\right.\right.
\end{aligned}
$$

Orbit of $\pi-3$
© Timo Jolivet

Multiplication by 10 on $[0,1]$

$$
\begin{aligned}
& X=[0,1] \quad T: x \mapsto 10 \times(\bmod 1) \\
& \mathcal{P}=\left\{\left[\frac{1}{10}, \frac{i+1}{10}[: 0 \leq i \leq 9\}\right.\right.
\end{aligned}
$$

© Timo Jolivet

Multiplication by 10 on $[0,1]$

$$
\begin{aligned}
& X=[0,1] \quad T: x \mapsto 10 x(\bmod 1) \\
& \mathcal{P}=\left\{\left[\frac{i}{10}, \frac{i+1}{10}[: 0 \leq i \leq 9\}\right.\right.
\end{aligned}
$$

© Timo Jolivet

Multiplication by 10 on $[0,1]$

$$
\begin{aligned}
& X=[0,1] \quad T: x \mapsto 10 \times(\bmod 1) \\
& \mathcal{P}=\left\{\left[\frac{i}{10}, \frac{i+1}{10}[: 0 \leq i \leq 9\}\right.\right.
\end{aligned}
$$

© Timo Jolivet

Multiplication by 10 on $[0,1]$

$$
\begin{aligned}
& X=[0,1] \quad T: x \mapsto 10 \times(\bmod 1) \\
& \mathcal{P}=\left\{\left[\frac{1}{10}, \frac{i+1}{10}[: 0 \leq i \leq 9\}\right.\right.
\end{aligned}
$$

© Timo Jolivet

Multiplication by 10 on $[0,1]$

$$
\begin{aligned}
& X=[0,1] \quad T: x \mapsto 10 \times(\bmod 1) \\
& \mathcal{P}=\left\{\left[\frac{i}{10}, \frac{i+1}{10}[: 0 \leq i \leq 9\}\right.\right.
\end{aligned}
$$

© Timo Jolivet

Multiplication by 10 on $[0,1]$

$$
\begin{aligned}
& X=[0,1] \quad T: x \mapsto 10 \times(\bmod 1) \\
& \mathcal{P}=\left\{\left[\frac{i}{10}, \frac{i+1}{10}[: 0 \leq i \leq 9\}\right.\right.
\end{aligned}
$$

© Timo Jolivet

Multiplication by 10 on $[0,1]$

$$
\begin{aligned}
& X=[0,1] \quad T: x \mapsto 10 \times(\bmod 1) \\
& \mathcal{P}=\left\{\left[\frac{i}{10}, \frac{i+1}{10}[: 0 \leq i \leq 9\}\right.\right.
\end{aligned}
$$

© Timo Jolivet

Multiplication by 10 on $[0,1]$

$$
\begin{aligned}
& X=[0,1] \quad T: x \mapsto 10 x(\bmod 1) \\
& \mathcal{P}=\left\{\left[\frac{i}{10}, \frac{i+1}{10}[: 0 \leq i \leq 9\}\right.\right.
\end{aligned}
$$

© Timo Jolivet

Multiplication by 10 on $[0,1]$

$$
\begin{aligned}
& X=[0,1] \quad T: x \mapsto 10 \times(\bmod 1) \\
& \mathcal{P}=\left\{\left[\frac{i}{10}, \frac{i+1}{10}[: 0 \leq i \leq 9\}\right.\right.
\end{aligned}
$$

© Timo Jolivet

Multiplication by 10 on $[0,1]$

$$
\begin{aligned}
& X=[0,1] \quad T: x \mapsto 10 \times(\bmod 1) \\
& \mathcal{P}=\left\{\left[\frac{i}{10}, \frac{i+1}{10}[: 0 \leq i \leq 9\}\right.\right.
\end{aligned}
$$

© Timo Jolivet

Multiplication by 10 on $[0,1]$

$$
\begin{aligned}
& X=[0,1] \quad T: x \mapsto 10 x(\bmod 1) \\
& \mathcal{P}=\left\{\left[\frac{i}{10}, \frac{i+1}{10}[: 0 \leq i \leq 9\}\right.\right.
\end{aligned}
$$

© Timo Jolivet

Multiplication by 10 on $[0,1]$

$$
\begin{aligned}
& X=[0,1] \quad T: x \mapsto 10 x(\bmod 1) \\
& \mathcal{P}=\left\{\left[\frac{i}{10}, \frac{i+1}{10}[: 0 \leq i \leq 9\}\right.\right.
\end{aligned}
$$

© Timo Jolivet

Multiplication by 10 on $[0,1]$

$$
\begin{aligned}
& X=[0,1] \quad T: x \mapsto 10 x(\bmod 1) \\
& \mathcal{P}=\left\{\left[\frac{i}{10}, \frac{i+1}{10}[: 0 \leq i \leq 9\}\right.\right.
\end{aligned}
$$

© Timo Jolivet

Multiplication by 10 on $[0,1]$

$$
\begin{aligned}
& X=[0,1] \quad T: x \mapsto 10 \times(\bmod 1) \\
& \mathcal{P}=\left\{\left[\frac{i}{10}, \frac{i+1}{10}[: 0 \leq i \leq 9\}\right.\right.
\end{aligned}
$$

© Timo Jolivet

Multiplication by 10 on $[0,1]$

$$
\begin{aligned}
& X=[0,1] \quad T: x \mapsto 10 \times(\bmod 1) \\
& \mathcal{P}=\left\{\left[\frac{i}{10}, \frac{i+1}{10}[: 0 \leq i \leq 9\}\right.\right.
\end{aligned}
$$

© Timo Jolivet

From numeration dynamics to symbolic dynamics

- Decimal expansion $T:[0,1] \rightarrow[0,1], x \mapsto\{10 x\}$
- Beta-transformation $T:[0,1] \rightarrow[0,1], x \mapsto\{\beta x\}$
- Continued fractions $T:[0,1] \rightarrow[0,1], x \mapsto\{1 / x\}$

From numeration dynamics to symbolic dynamics

- Decimal expansion $T:[0,1] \rightarrow[0,1], x \mapsto\{10 x\}$
- Beta-transformation $T:[0,1] \rightarrow[0,1], x \mapsto\{\beta x\}$

$$
\beta>1 \quad x=\sum_{i=1}^{\infty} a_{i} \beta^{-i}
$$

- Continued fractions $T:[0,1] \rightarrow[0,1], x \mapsto\{1 / x\}$

$$
x=\frac{1}{a_{1}+x_{1}}=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{4}+\cdots}}}}
$$

Word combinatorics vs. symbolic dynamics

Let $u \in \mathcal{A}^{\mathbb{N}}$ be an infinite word.

- Word combinatorics

Study of the number of factors of a given length (factor complexity), frequencies, powers

- Symbolic dynamics Let
$\left.X_{u}:=\overline{\left\{S^{n} u \mid n \in \mathbb{N}\right.}\right\}$ with the shift $S\left(\left(u_{n}\right)_{n}\right)=\left(u_{n+1}\right)_{n}$
$\left(X_{u}, S\right)$ is a symbolic dynamical system
Study of invariant measures, recurrence properties, finding geometric representations, spectral properties

From word combinatorics to symbolic dynamics

Let \mathcal{A} be a finite alphabet and let $u \in \mathcal{A}^{\mathbb{N}}$ be an infinite word Let S stand for the shift map

$$
\left.X_{u}:=\overline{\left\{S^{n} u \mid n \in \mathbb{N}\right.}\right\} \subset \mathcal{A}^{\mathbb{N}}
$$

$\left(X_{u}, S\right)$ is a symbolic dynamical system

$$
X_{u}=\left\{v ; \mathcal{L}_{v} \subset \mathcal{L}_{u}\right\}
$$

This is the set of infinite words whose factors belong to the language \mathcal{L}_{u} of u, i.e., the set of factors of u

Symbolic dynamics

- 1898, Hadamard: Geodesic flows on surfaces of negative curvature
- 1912, Thue: Prouhet-Thue-Morse substitution

$$
\sigma: a \mapsto a b, \quad b \mapsto b a
$$

- 1921, Morse: Symbolic representation of geodesics on a surface with negative curvature. Recurrent geodesics

Symbolic dynamics

- 1898, Hadamard: Geodesic flows on surfaces of negative curvature
- 1912, Thue: Prouhet-Thue-Morse substitution

$$
\sigma: a \mapsto a b, \quad b \mapsto b a
$$

- 1921, Morse: Symbolic representation of geodesics on a surface with negative curvature. Recurrent geodesics

From geometric dynamical systems to symbolic dynamical systems and backwards

- Given a geometric system, can one find a good partition?
- And vice-versa?

A substitution on words: the Fibonacci substitution

Definition A substitution σ is a morphism of the free monoid $\quad \sigma(u v)=\sigma(u) \sigma(v)$

Positive morphism of the free group, no cancellations

Example

$$
\begin{gathered}
\sigma: 1 \mapsto 12,2 \mapsto 1 \\
1 \\
12 \\
121 \\
12112 \\
12112121 \\
\sigma^{\infty}(1)=121121211211212 \ldots
\end{gathered}
$$

A substitution on words: the Fibonacci substitution

 Definition A substitution σ is a morphism of the free monoid $\quad \sigma(u v)=\sigma(u) \sigma(v)$Positive morphism of the free group, no cancellations
Example

$$
\sigma: 1 \mapsto 12,2 \mapsto 1 \quad \sigma^{\infty}(1)=121121211211212 \cdots
$$

J. Berstel, D. Perrin / European Journal of Combinatorics 28 (2007) $996-1022$

Fig. 3. The graptical representation of the Fibonacci word.

A substitution on words: the Fibonacci substitution

Definition A substitution σ is a morphism of the free monoid

$$
\sigma(u v)=\sigma(u) \sigma(v)
$$

Positive morphism of the free group, no cancellations

Example

$$
\sigma: 1 \mapsto 12,2 \mapsto 1 \quad \sigma^{\infty}(1)=121121211211212 \cdots
$$

Why the terminology Fibonacci word?

$$
\begin{gathered}
\sigma^{n+1}(1)=\sigma^{n}(12)=\sigma^{n}(1) \sigma^{n}(2) \\
\sigma^{n}(2)=\sigma^{n-1}(1) \\
\sigma^{n+1}(1)=\sigma^{n}(1) \sigma^{n-1}(1)
\end{gathered}
$$

The length of the word $\sigma^{n}(1)$ satisfies the Fibonacci recurrence

How to define a notion of order for an infinite

 word?Consider the Fibonacci word
$u=\sigma^{\infty}(a)=$ abaababaabaababaababaabaababaabaababaababaa..

- There is a simple algorithmic way to construct it (cf. Kolmogorov complexity)

How to define a notion of order for an infinite word?

Consider the Fibonacci word
$u=\sigma^{\infty}(a)=$ abaababaabaababaababaabaababaabaababaababaa

- There are few local configurations $=$ factors

A factor is a word made of consecutive occurrences of letters
$a b$ is a factor, $b b$ is not a factor of the Fibonacci word But . . . aaaaaaaaaaaaabaaaaaaaaaaa . . .
has as many factors of length n as
... abaababaabaababaababaabaababaabaababaababaa . . .

The Fibonacci word has $n+1$ factors of length n

How to define a notion of order for an infinite

 word?Consider the Fibonacci word
$u=\sigma^{\infty}(a)=$ abaababaabaababaababaabaababaabaababaababaa

- Consider frequencies of occurrences of factors

Symbolic discrepancy

$$
\Delta_{N}=\left.\max _{i \in \mathcal{A}}| | u_{0} u_{1} \ldots u_{N-1}\right|_{i}-N \cdot f_{i} \mid
$$

if each letter i has frequency f_{i} in u

$$
f_{i}=\lim _{N \rightarrow \infty} \frac{\left|u_{0} \cdots u_{N-1}\right|_{i}}{N}
$$

The Fibonacci word has bounded symbolic discrepancy

Complexity and periodicity

Let $u \in \mathcal{A}^{\mathbb{N}}$ be an infinite word
The factor complexity $p_{u}(n)$ counts the number of factors of length n

Theorem [Morse-Hedlund 1940]

If there exists n such that $p_{u}(n) \leq n$, then u is ultimately periodic

There exists T such that $u_{n}=u_{n+T}$ for all n large enough

Proof

- We can assume $p_{u}(1) \geq 2$
- There exists $1 \leq k \leq n-1$ such that $p_{u}(k)=p_{u}(k+1)$
- Every factor w of length k admits a unique letter $a \in \mathcal{A}$ such that wa is also a factor of u
- Take a factor of length k that occurs at least twice in u

Sturmian words

Sturmian words [Morse-Hedlund, 1940] $p_{u}(n)=n+1$ for all n

Sturmian words

A word $u \in\{0,1\}^{\mathbb{N}}$ is Sturmian if $p_{u}(n)=n+1$ for all n
The Fibonacci word has $n+1$ factors of length n

- Sturmian words are the words having the lowest factor complexity among non-periodic words
- They are codings of discrete lines

Sturmian words

Sturmian words are defined as the infinite words with factor complexity $n+1$ for all n

0110110101101101

Sturmian words

Sturmian words are defined as the infinite words with factor complexity $n+1$ for all n

0110110101101101

11 and 00 cannot occur simultaneously

Sturmian words

Sturmian words are defined as the infinite words with factor complexity $n+1$ for all n

0110110101101101

One considers the substitutions

$$
\begin{aligned}
& \sigma_{0}: 0 \mapsto 0, \sigma_{0}: 1 \mapsto 10 \\
& \sigma_{1}: 0 \mapsto 01, \sigma_{1}: 1 \mapsto 1
\end{aligned}
$$

One has

$$
\begin{gathered}
0110110101101101=\sigma_{1}(0101001010) \\
0101001010=\sigma_{0}(011011) \\
011011=\sigma_{1}(0101) \\
0101=\sigma_{1}(00)
\end{gathered}
$$

Sturmian words

Sturmian words are defined as the infinite words with factor complexity $n+1$ for all n

0110110101101101

One considers the substitutions

$$
\begin{aligned}
& \sigma_{0}: 0 \mapsto 0, \sigma_{0}: 1 \mapsto 10 \\
& \sigma_{1}: 0 \mapsto 01, \sigma_{1}: 1 \mapsto 1
\end{aligned}
$$

The Sturmian words of slope α are provided by an infinite composition of substitutions

$$
\lim _{n \rightarrow+\infty} \sigma_{0}^{a_{1}} \sigma_{1}^{a_{2}} \cdots \sigma_{2 n}^{a_{2 n}} \sigma_{2 n+1}^{a_{2 n+1}}(0)
$$

where the a_{i} are produced by the continued fraction expansion of α

Continued fractions

We represent real numbers in $(0,1)$ as

with partial quotients (digits) $a_{i} \in \mathbb{N}^{*}$

Continued fractions

One represents α as

$$
\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots}}}
$$

in order to find good rational approximations of α

Continued fractions

One represents α as

$$
\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots}}}
$$

in order to find good rational approximations of α

$$
\frac{p_{n}}{q_{n}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots+\frac{1}{a_{n}}}}}
$$

Continued fractions

One represents α as

$$
\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots}}}
$$

in order to find good rational approximations of α

$$
\begin{gathered}
\frac{p_{n}}{q_{n}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots+\frac{1}{a_{n}}}}}+ \\
\left.\mid \alpha-p_{n} / q_{n}\right] \leq 1 / q_{n}^{2}
\end{gathered}
$$

[http://images.math.cnrs.fr/Nombres-et-representations.html]

Complexity and periodicity

Theorem [Morse-Hedlund 1940]
If there exists n such that u has at most n factors of length n, then u is ultimately periodic

Nivat's conjecture
We now consider two-dimensional words $u \in \mathcal{A}^{\mathbb{Z}^{2}}$ and rectangular factors

1	2	1	2	1	2	3	1	2	1	2	3	1	3	
3	1	3	1	2	1	2	3	1	2	1	2	1	2	
2	1	2	3	1	2	1	2	3	1	3	1	2	1	
1	2	1	2	3	1	3	1	2	1	2	3	1	2	
3	1	2	1	2	1	2	3	1	2	1	2	3	1	
2	3	1	3	1	2	1	2	3	1	2	1	2	1	
	2	1	2	3	1	2	1	2	3	1	3	1	2	
	1	2	1	2	3	1	3	1	2	1	2	3		

Nivat's conjecture

We now consider two-dimensional words $u \in \mathcal{A}^{\mathbb{Z}^{2}}$ and rectangular factors

Nivat's conjecture [ICALP-1997]
If there exists m, n such that u admits at most $m n$ rectangular factors of size (m, n), i.e.,

$$
p_{u}(m, n) \leq m n,
$$

then u is periodic.

Nivat's conjecture

We now consider two-dimensional words $u \in \mathcal{A}^{\mathbb{Z}^{2}}$ and rectangular factors

Nivat's conjecture [ICALP-1997]
If there exists m, n such that u admits at most $m n$ rectangular factors of size (m, n), i.e.,

$$
p_{u}(m, n) \leq m n,
$$

then u is periodic.
Periodic means periodic along one direction. There exists a non-zero vector (s, t) such that $u(m, n)=u(m+s, n+t) \forall(m, n)$.

Nivat's conjecture is not about full periodicity

A word in $\mathcal{A}^{\mathbb{Z}^{d}}$ is fully periodic if and only if its rectangular factor complexity function is bounded.

Proof

- One has $p_{u}(1, \cdots, 1, n, 1, \cdots, 1) \leq C$ for all n.
- Apply Morse-Hedlund's theorem.

Nivat's conjecture is not an equivalence

There exist periodic words with high factor complexity
There exists u periodic such that $p_{u}(m, n)=2^{m+n-1}$ for all (m, n).

- Take a 1D word x with factor complexity $p_{x}(n)=2^{n}$ for all n (e.g., Champernowne construction).
- Define $u \in\{0,1\}^{\mathbb{Z}^{2}}$ by $u(m, n):=x(0, m+n)$ for all (m, n).
- It has period $(-1,1)$.

Nivat's conjecture is a two-dimensional conjecture

Take $d=3$
Define $u \in\{0,1\}^{\mathbb{Z}^{3}}$ as

- $u_{m, 0,0}=1$ for all m
- $u_{0, n_{0}, p}=1$ for all p with $n_{0} \neq 0$
- $u_{m, n, p}=0$ otherwise

One has for $2 \leq n \leq n_{0}$

$$
p_{u}(n, \cdots, n)=2 n^{2}+1<n^{3}
$$

Note that u is a sum of two periodic words
${ }^{\circ}$ Kari-Szabados

Nivat's conjecture is about rectangular factors

What about general patterns? [Cassaigne]

$$
\text { If } p_{u}(D) \leq|D| \text { for some } D \text {, is } u \text { periodic? }
$$

Not necessarily, even if the pattern D is an $h v$-convex polyomino (if two points in the same row or column are in the pattern, then all integer points on the segment between them should be included too)

What about convex patterns (the trace in \mathbb{Z}^{2} of convex sets in $\left.\mathbb{R}^{2}\right)$?

Some results toward Nivat's conjecture

The following conditions imply periodicity

- $p_{u}(2, n) \leq 2 n$ or $p_{u}(n, 2) \leq 2 n$ for some n [Sander-Tijdeman 2002]
- $p_{u}(m, n) \leq \frac{1}{144} m n$ for some (m, n) [Epifanio-Koskas-Mignosi 2003]
- $p_{u}(m, n) \leq \frac{1}{16} m n$ for some (m, n) [Quas-Zamboni 2004] Combinatorial approach
- $p_{u}(m, n) \leq \frac{1}{2} m n$ for some (m, n) [Cyr-Kra 2015] Dynamical approach
- $p_{u}(m, 3) \leq 3 m n$ for some (m, n) [Cyr-Kra 2016]
- $p_{u}(m, n) \leq m n$ for infinitely many pairs (m, n) [Kari-Szabados 2015] Algebraic approach

Sturmian words

Sturmian words are the words that have $n+1$ factors of length n for all n
They are codings of discrete lines

© Th. Fernique

Discrete planes and 2D Sturmian words

©Th. Fernique

Discrete planes and 2D Sturmian words

(c)Th. Fernique

2D Sturmian words [B.-Vuillon]
$p_{u}(m, n)=m n+m+n$ for all (m, n)

2D Sturmian words are

- codings of discrete planes
- they have low complexity function
- quasicrystals

The geometry of discrete objects

can be

- algorithmic/computational ex: convex hull, Delaunay triangulation
- discrete/digital ex: discretization, segmentation, discrete convexity
- discrete differential ex: topological combinatorics, geometric estimators
- combinatorial ex: packings, hyperplane arrangements

Discrete geometry Digital geometry

Analysis of geometric problems on objects defined on regular lattices

[D. Coeurjoly, Digital geometry in a Nutshell]

Discrete geometry Digital geometry

Analysis of geometric problems on objects defined on regular lattices

Among the most basic primitives one finds discrete lines and planes

[D. Coeurjoly, Digital geometry in a Nutshell]

Discrete geometry Digital geometry

Analysis of geometric problems on objects defined on regular lattices

Example of application: segmentation into maximal discrete segments

[D. Coeurjoly, Digital geometry in a Nutshell]

Digital geometry

How to discretize a line in the space?

- There are the usual difficulties related to discrete geometry
- There are further difficulties due to the codimension >1 for discrete lines

[D. Coeurjoly, Digital geometry in a Nutshell http://liris.cnrs.fr/david.coeurjolly/doku/doku.php]

Euclid first axiom

Given two points A and B, there exists a unique line that contains them
This is no more true in the discrete case

[D. Coeurjoly, Digital geometry in a Nutshell]

Words, tilings and

quasicrystals

A crystal

A periodic arrangement of atoms

Quasiperiodicity and quasicrystals

Quasicrystals are solids discovered in 84 with an atomic structure that is both ordered and aperiodic [Shechtman-Blech-Gratias-Cahn]

An aperiodic system may have long-range order (cf. Aperiodic tilings [Wang'61, Berger'66, Robinson'71,...])

Which mathematical models for quasicrystals?

There are mainly two methods for producing quasicrystals

- Substitutions
- Cut and project schemes
[WHAT IS.. a Quasicrystal? M. Senechal]

Which models for quasicrystals?

"His discovery was extremely controversial. In the course of defending his findings, he was asked to leave his research group. However, his battle eventually forced scientists to reconsider their conception of the very nature of matter."
Aperiodic mosaics, such as those found in the medieval Islamic mosaics of the Alhambra Palace in Spain and the Darb-i Imam Shrine in Iran, have helped scientists understand what quasicrystals look like at the atomic level. In those mosaics, as in quasicrystals, the patterns are regular - they follow mathematical rules - but they never repeat themselves.

When scientists describe Shechtman's quasicrystals, they use a concept that comes from mathematics and art : the golden ratio.
© Communiqué de presse de l'Académie royale suédoise des sciences 2011

Cut and project schemes

Projection of a "plane" slicing through a higher dimensional lattice

- The order comes from the lattice structure
- The nonperiodicity comes from the irrationality of the normal vector of the "plane"

Sturmian words are 1D quasicrystals

Toward long-range aperiodic order

What is meant by quasiperiodicity?

The objects under consideration

- Infinite words (sequences with values in a finite alphabet)

abaababaabaababaababaabaababaabaababaababaa...

- Tilings

A tiling of the plane is a collection of tiles that covers the plane with no overlaps

Substitutions

- Substitutions on words and symbolic dynamical systems
- Substitutions on tiles: inflation/subdivision rules, tilings and point sets

- Tilings Encyclopedia http://tilings.math.uni-bielefeld.de/
[E. Harriss, D. Frettlöh]

Wang tiles

These are square tiles with colors on each side and colors have to match.

A decision problem (1961)
Can one tile the plane with a given set of Wang tiles?

The Eternity game

A price of 2 millions of dollars!
256 Wang tiles to place on a 16×16 grid The number of solutions is estimated to 20000
https://fr.wikipedia.org/wiki/Eternity_(jeu)

A conjecture
If a set of Wang tiles can pave the plane, it can pave it in a periodic way

We then can decide the domino problem which turned to be false

There exist aperiodic sets of tiles!

```
https://www.lri.fr/~ aubrun/exposes/SML_Aubrun.pdf
http://images.math.cnrs.fr/Dominos-aperiodiques.html
```


Aperiodic sets of tiles

They only allow the production of aperiodic tilings

- Berger, 196420426 tiles (computability)
- Berger, 1964104 tiles
- Robinson, 196752 tiles (computability and substitutions)
- Penrose, 197634 tiles (substitutions)

Aperiodic sets of tiles

They only allow the production of aperiodic tilings

- Berger, 196420426 tiles (computability)
- Berger, 1964104 tiles
- Robinson, 196752 tiles (computability and substitutions)
- Penrose, 197634 tiles (substitutions)

And the actual record is

- E. Jeandel and M. Rao, 201511 tiles and 4 colors

A periodic tiling

A periodic tiling

A periodic tiling

A periodic tiling

A periodic tiling

Penrose tiling

This aperiodic tiling is also generated by cut and projection and by substitution

Penrose tiling

This aperiodic tiling is also generated by cut and projection and by substitution

Penrose tiling

This aperiodic tiling is also generated by cut and projection and by substitution

Penrose tiling

This aperiodic tiling is also generated by cut and projection and by substitution

Penrose tiling

This aperiodic tiling is also generated by cut and projection and by substitution

Penrose tiling

This aperiodic tiling is also generated by cut and projection and by substitution

Penrose tiling

This aperiodic tiling is also generated by cut and projection and by substitution

Combinatorics and analysis

of algorithms

Analysis of algorithms

- Analysis of algorithms [Knuth'63]
probabilistic, combinatorial, and analytic methods
- Analytic combinatorics [Flajolet-Sedgewick]

generating functions and complex analysis, analysis of the singularities
- Dynamical analysis of algorithms [Vallée]

Transfer operators \sim Generating functions of Dirichlet type

Average analysis of algorithms

Remark: Worst case vs. average analysis of algorithms

Average analysis of algorithms

Remark: Worst case vs. average analysis of algorithms
Elements for an average analysis

- An algorithm \mathcal{A} whose inputs belong to some set Ω
- A cost function $X: \Omega \rightarrow \mathbb{R}^{+}$that describes the algorithm (bit complexity, size of the output, memory/space complexity, ...)
- A size function: $\Omega=\bigcup_{n} \Omega_{n}$
- Each set Ω_{n} is endowed with a probability distribution (usually the uniform distribution)

Average analysis of algorithms

We consider a cost function $X: \Omega \rightarrow \mathbb{R}^{+}$

- [mean value] Compute the asymptotic mean value of X

$$
\mathrm{E}_{n}[X] \underset{n \rightarrow \infty}{\sim}
$$

ex: what is the average bit complexity of the algorithm when the input size n is large? Is it linear in n ? Quadratic in n ?

Average analysis of algorithms

We consider a cost function $X: \Omega \rightarrow \mathbb{R}^{+}$

- [mean value] Compute the asymptotic mean value of X

$$
\mathrm{E}_{n}[X] \underset{n \rightarrow \infty}{\sim}
$$

ex: what is the average bit complexity of the algorithm when the input size n is large? Is it linear in n ? Quadratic in n ?

- [variance] Compute the asymptotic of the variance

$$
\mathrm{V}_{n}[X] \underset{n \rightarrow \infty}{\sim}
$$

ex: is the probability to be far from the mean value asymptotically close to 0 ?

Average analysis of algorithms

We consider a cost function $X: \Omega \rightarrow \mathbb{R}^{+}$

- [mean value] Compute the asymptotic mean value of X

$$
\mathrm{E}_{n}[X] \underset{n \rightarrow \infty}{\sim}
$$

ex: what is the average bit complexity of the algorithm when the input size n is large? Is it linear in n ? Quadratic in n ?

- [variance] Compute the asymptotic of the variance

$$
\mathrm{V}_{n}[X] \underset{n \rightarrow \infty}{\sim}
$$

ex: is the probability to be far from the mean value asymptotically close to 0 ?

- [limit law] what is the limit law of X

$$
\frac{X-\mathrm{E}_{n}[X]}{\sigma_{n}(X)} \underset{n \rightarrow \infty}{\rightarrow}
$$

ex: what is asymptotically the probability that X is in the interval $[a, b]$?

On the Euclidean algorithm

We start from two positive integers u_{0} and u_{1}

$$
\begin{gathered}
u_{0}=u_{1}\left[\frac{u_{0}}{u_{1}}\right]+u_{2} \\
u_{1}=u_{2}\left[\frac{u_{1}}{u_{2}}\right]+u_{3} \\
\vdots \\
u_{m-1}=u_{m}\left[\frac{u_{m-1}}{u_{m}}\right]+u_{m+1} \\
u_{m+1}=\operatorname{gcd}\left(u_{0}, u_{1}\right) \\
u_{m+2}=0
\end{gathered}
$$

Euclid algorithm and continued fractions

We start with two coprime integers u_{0} and u_{1}

$$
u_{0}=u_{1} a_{1}+u_{2}
$$

Euclid algorithm and continued fractions

We start with two coprime integers u_{0} and u_{1}

$$
u_{0}=u_{1} a_{1}+u_{2}
$$

$$
\begin{gathered}
u_{m-1}=u_{m} a_{m}+u_{m+1} \\
u_{m}=u_{m+1} a_{m+1}+0 \\
u_{m+1}=1=\operatorname{gcd}\left(u_{0}, u_{1}\right)
\end{gathered}
$$

Euclid algorithm and continued fractions

We start with two coprime integers u_{0} and u_{1}

$$
\begin{gathered}
u_{0}=u_{1} a_{1}+u_{2} \\
\frac{u_{1}}{u_{0}}=\frac{1}{a_{1}+\frac{u_{2}}{u_{1}}} \\
u_{1} / u_{0}=\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots+\frac{1}{a_{m}+\frac{1}{a_{m+1}}}}}
\end{gathered}
$$

On the number of Euclidean divisions for Euclid's algorithm

- Lamé (1850): the worst case is linear w.r.t. the input binary size
- Heilbron (69) and Dixon (70): the mean number of divisions is linear w.r.t. the input binary size
- Hensley (1994): the number of divisions follows a gaussian limit law

Number of steps for the Euclid algorithm

Let $L(u, v)$ stand for number of steps with $0<v<u$

- Worst case

$$
L(u, v)=O(\log v) \quad\left(\leq 5 \log _{10} v,\right. \text { Lamé 1844) }
$$

Number of steps for the Euclid algorithm

Let $L(u, v)$ stand for number of steps with $0<v<u$

- Worst case

$$
L(u, v)=O(\log v) \quad\left(\leq 5 \log _{10} v,\right. \text { Lamé 1844) }
$$

- Mean case $0<v<u \leq N \quad \operatorname{gcd}(u, v)=1$

Consider

$$
\Omega_{m}:=\left\{\left(u_{1}, u_{2}\right) \in \mathbb{N}^{2}, 0 \leq u_{1}, u_{2} \leq m\right\}
$$

endowed with the uniform distribution

$$
\mathbb{E}_{N}[L] \sim \frac{12 \log 2}{\pi^{2}} \cdot \log N
$$

Number of steps for the Euclid algorithm

Let $L(u, v)$ stand for number of steps with $0<v<u$

- Worst case

$$
L(u, v)=O(\log v) \quad\left(\leq 5 \log _{10} v,\right. \text { Lamé 1844) }
$$

- Mean case $0<v<u \leq N \quad \operatorname{gcd}(u, v)=1$

$$
\begin{gathered}
\mathbb{E}_{N}[L] \sim \frac{12 \log 2}{\pi^{2}} \cdot \log N+\eta+O\left(N^{-\gamma}\right) \\
\eta \quad \text { Porter's constant } \\
\text { asymptotically normal distribution }
\end{gathered}
$$

Formal power series

with coefficients in \mathbb{F}_{q}

Formal power series

Let q be a power of a prime number p
We have the correspondence

- $\mathbb{Z} \sim \mathbb{F}_{q}[X]$
- $\mathbb{Q} \sim \mathbb{F}_{q}(X)$
- $\mathbb{R} \sim \mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$

$$
f=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0}+a_{-1} X^{-1}+\cdots
$$

Laurent formal power series

Formal power series

Let $f \in \mathbb{F}_{q}\left(\left(X^{-1}\right)\right) \quad f \neq 0$

$$
f=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots \quad a_{n} \neq 0
$$

- Degree

$$
\operatorname{deg} f=n
$$

- Distance

$$
|f|=q^{\operatorname{deg} f}
$$

Ultrametric space

$$
|f+g| \leq \max (|f|,|g|)
$$

No carry propagation!

Generating functions

$$
\Omega=\left\{(P, Q) \in \mathbb{F}_{q}[X]^{2}: Q \text { monic, } P=0 \text { or } \operatorname{deg} P<\operatorname{deg} Q\right\}
$$

$$
\Omega_{m}=\{(P, Q) \in \Omega: \operatorname{deg} Q=m\}
$$

- Size of $(P, Q):=\operatorname{deg} Q$
- Generating function

$$
T_{\Omega}(z):=\sum_{m \geq 0}\left|\Omega_{m}\right| z^{m}=\sum_{(P, Q) \in \Omega} z^{\operatorname{deg}(Q)}
$$

- Fact

$$
\begin{gathered}
\left|\Omega_{m}\right|=q^{2 m} \\
T_{\Omega}(z):=\sum_{m \geq 0}\left|\Omega_{m}\right| z^{m}=\frac{1}{1-q^{2} z}
\end{gathered}
$$

A fundamental bijection

Euclid algorithm $\sim(P, Q)$ is uniquely determined by partial quotients $\left(A_{1}, \cdots, A_{L}\right)+\operatorname{gcd}($ monic $)$

A fundamental bijection

Euclid algorithm $\leadsto(P, Q)$ is uniquely determined by partial quotients $\left(A_{1}, \cdots, A_{L}\right)+\operatorname{gcd}$ (monic)

$$
\operatorname{deg}(Q)=\sum \operatorname{deg}\left(A_{i}\right)+\operatorname{deg}(\operatorname{gcd})
$$

Ultrametricity!

A fundamental bijection

Euclid algorithm $\leadsto(P, Q)$ is uniquely determined by

$$
\begin{aligned}
& \text { partial quotients }\left(A_{1}, \cdots, A_{L}\right)+\operatorname{gcd} \text { (monic) } \\
& \qquad \operatorname{deg}(Q)=\sum \operatorname{deg}\left(A_{i}\right)+\operatorname{deg}(\operatorname{gcd}) \\
& \text { Ultrametricity! }
\end{aligned}
$$

$\mathcal{G}=\left\{P \in \mathbb{F}_{q}[X]: \operatorname{deg} P \geq 1\right\} \quad$ partial quotients $\mathcal{U}=\left\{P \in \mathbb{F}_{q}[X]: P\right.$ is monic $\} \quad \mathrm{gcd}$

Fact $\quad \Omega=\operatorname{Seq}(\mathcal{G}) \times \mathcal{U}$
$\operatorname{Seq}(\mathcal{G}):=$ finite sequences of elements of \mathcal{G}
$\Omega=\left\{(P, Q) \in \mathbb{F}_{q}[X]^{2}: Q\right.$ monic, $P=0$ or $\left.\operatorname{deg} P<\operatorname{deg} Q\right\}$

Generating functions

$\Omega=\left\{(P, Q) \in \mathbb{F}_{q}[X]^{2}: Q\right.$ monic, $P=0$ or $\left.\operatorname{deg} P<\operatorname{deg} Q\right\}$
$\mathcal{G}_{m}=\left\{P \in \mathbb{F}_{q}[X]: \operatorname{deg} P \geq 1, \operatorname{deg}(P)=m\right\} \quad$ quotients $\mathcal{U}_{m}=\left\{P \in \mathbb{F}_{q}[X]: P\right.$ is monic, $\left.\operatorname{deg}(P)=m\right\} \quad \operatorname{gcd}$

- Generating function

$$
\begin{aligned}
& U(z):=\sum_{m \geq 0}\left|\mathcal{U}_{m}\right| z^{m}=\frac{1}{1-q z} \\
& G(z):=\sum_{m \geq 0}\left|\mathcal{G}_{m}\right| z^{m}=(q-1)\left(\frac{1}{1-q z}-1\right)=\frac{(q-1) q z}{1-q z}
\end{aligned}
$$

- Fact $\Omega=\operatorname{Seq}(\mathcal{G}) \times \mathcal{U}$

$$
\begin{gathered}
\sim T_{\Omega}(z)=\left(\sum_{k \geq 0} G^{k}(z)\right) \times U(z)=\frac{1}{1-G(z)} \times U(z) \\
T_{\Omega}(z)=\sum \frac{1}{1-q^{2} z}, \quad\left|\Omega_{m}\right|=q^{2 m}
\end{gathered}
$$

Additive costs

Let c be a cost defined on the set \mathcal{G} of quotients

Additive costs

Let c be a cost defined on the set \mathcal{G} of quotients
Additive cost C on Ω

$$
C(P, Q):=\sum_{i=1}^{L(P, Q)} c\left(A_{i}\right)
$$

The A_{i} are the quotients

Example: $C=1$ Number of steps

We introduce a further variable for the cost u

Additive costs

Let c be a cost defined on the set \mathcal{G} of quotients
\leadsto generating functions with two variables

Additive costs

Let c be a cost defined on the set \mathcal{G} of quotients

$$
\begin{gathered}
S_{c}(z, u)=\sum_{P \in \mathcal{G}} z^{\operatorname{deg} P \cdot u^{c(P)} \quad \mathcal{G}=\left\{P \in \mathbb{F}_{q}[X]: \operatorname{deg} P \geq 1\right\}} \\
S_{c}(z, u)=\sum_{m, k}|\{P \in \mathcal{G}, \operatorname{deg} P=m, c(P)=k\}| z^{m} u^{k} \\
T_{c}(z, u)=\sum_{(P, Q) \in \Omega} z^{\operatorname{deg} Q} \cdot u^{C(P, Q)}
\end{gathered}
$$

$$
T_{C}(z, u)=\sum_{m, k}|\{(P, Q) \in \Omega, \operatorname{deg} Q=m, C(P, Q)=k\}| z^{m} u^{k}
$$

Additive costs

Let c be a cost defined on the set \mathcal{G} of quotients

$$
\begin{gathered}
S_{c}(z, u)=\sum_{P \in \mathcal{G}} z^{\operatorname{deg} P} \cdot u^{c(P)} \\
T_{c}(z, u)=\sum_{(P, Q) \in \Omega} z^{\operatorname{deg} Q} \cdot u^{C(P, Q)}
\end{gathered}
$$

Fact

$$
\begin{aligned}
T_{\Omega}(z) & =\frac{1}{1-G(z)} \cdot U(z) \\
T_{C}(z, u) & =\frac{1}{1-S_{c}(z, u)} \cdot U(z)
\end{aligned}
$$

An example of an additive cost

$$
\begin{aligned}
& \Omega=\left\{(P, Q) \in \mathbb{F}_{q}[X]^{2}: Q \text { monic, } P=0, \text { or } \operatorname{deg} P<\operatorname{deg} Q\right\} \\
& \mathcal{G}=\left\{P \in \mathbb{F}_{q}[X]: \operatorname{deg} P \geq 1\right\} \quad \mathcal{U}=\left\{P \in \mathbb{F}_{q}[X]: P \text { is monic }\right\}
\end{aligned}
$$

An example of an additive cost

- $c=1, C=$ number of steps for Euclid algorithm

$$
S_{c}(z, u)=u \cdot G(z)
$$

$$
\begin{array}{r}
G(z)=\frac{(q-1) q z}{1-q z} \quad \mathcal{G}=\left\{P \in \mathbb{F}_{q}[X]\right. \\
T_{C}(z, u)=\frac{1}{1-u G} \cdot U(z)
\end{array}
$$

How to get expectations?

$$
\begin{aligned}
& \Omega=\left\{(P, Q) \in \mathbb{F}_{q}[X]^{2}: Q \text { monic, } P=0, \text { or } \operatorname{deg} P<\operatorname{deg} Q\right\} \\
& \mathcal{G}=\left\{P \in \mathbb{F}_{q}[X]: \operatorname{deg} P \geq 1\right\} \quad \text { partial quotients } \\
& \mathcal{U}=\left\{P \in \mathbb{F}_{q}[X]: P \text { is monic }\right\} \quad \text { gcd } \\
& T_{\Omega}(z)=\frac{1}{1-G(z)} \cdot U(z), \quad T_{c}(z, u)=\frac{1}{1-S_{c}(z, u)} \cdot U(z) \\
& S_{c}(z, u)=\sum_{m, k}|\{P \in \mathcal{G}, \operatorname{deg} P=m, c(P)=k\}| z^{m} u^{k} \\
& T_{C}(z, u)=\sum_{m, k}|\{(P, Q) \in \Omega, \operatorname{deg} Q=m, C(P, Q)=k\}| z^{m} u^{k}
\end{aligned}
$$

How to get expectations?

$$
\begin{gathered}
T_{\Omega}(z)=\frac{1}{1-G(z)} \cdot U(z), \quad T_{c}(z, u)=\frac{1}{1-S_{c}(z, u)} \cdot U(z) \\
S_{c}(z, u)=\sum_{m, k}|\{P \in \mathcal{G}, \operatorname{deg} P=m, c(P)=k\}| z^{m} u^{k} \\
T_{C}(z, u)=\sum_{m, k}\{(P, Q) \in \Omega, \operatorname{deg} Q=m, C(P, Q)=k\} \mid z^{m} u^{k}
\end{gathered}
$$

By taking derivatives w.r.t. u

$$
\begin{gathered}
\left.\frac{\partial}{\partial u} T_{C}\right|_{u=1}=\sum_{m} k|\{(P, Q) \in \Omega, \operatorname{deg} Q=m, C(P, Q)=k\}| z^{m} \\
\mathbb{E}_{m}[C]=\frac{\left.\left[z^{m}\right] \frac{\partial}{\partial u} T_{C}(z, u)\right|_{u=1}}{q^{2 m}}
\end{gathered}
$$

Number of steps

$$
\begin{gathered}
T_{L}(z, u)=\frac{1}{1-u G} \cdot U(z) \\
\left.\frac{\partial}{\partial u} T_{L}\right|_{u=1}=G\left(\frac{1}{1-G}\right)^{2} \cdot U(z) \\
\text { Expectation } \mathbb{E}_{m}[L]=\frac{\left.\left[z^{m}\right] \frac{\partial}{\partial u} T_{L}(z, u)\right|_{u=1}}{q^{2 m}}
\end{gathered}
$$

Number of steps

$$
\begin{gathered}
T_{L}(z, u)=\frac{1}{1-u G} \cdot U(z) \\
\left.\frac{\partial}{\partial u} T_{L}\right|_{u=1}=G\left(\frac{1}{1-G}\right)^{2} \cdot U(z) \\
\text { Expectation } \quad \mathbb{E}_{m}[L]=\frac{\left.\left[z^{m}\right] \frac{\partial}{\partial u} T_{L}(z, u)\right|_{u=1}}{q^{2 m}}
\end{gathered}
$$

Looking for singularities

$$
\begin{gathered}
G(z)=\frac{(q-1) q z}{1-q z} \quad \text { singularity } 1 / q \\
\left(\frac{1}{1-G}\right)^{2}=\frac{1-q z}{1-q^{2} z} \text { singularity } 1 / q^{2}
\end{gathered}
$$

The smallest pole is $1 / q^{2}$

Number of steps

$$
\begin{gathered}
T_{L}(z, u)=\frac{1}{1-u G} \cdot U(z) \\
\left.\frac{\partial}{\partial u} T_{L}\right|_{u=1}=G\left(\frac{1}{1-G}\right)^{2} \cdot U(z)
\end{gathered}
$$

Expectation $\quad \mathbb{E}_{m}[L]=\frac{\left.\left[z^{m}\right] \frac{\partial}{\partial u} T_{L}(z, u)\right|_{u=1}}{q^{2 m}} \quad$ linear in m

$$
\begin{aligned}
& T_{\Omega}(z)=\frac{1}{1-G} \cdot U(z)=\frac{1}{1-q^{2} z} \text { singularity } 1 / q^{2} \leadsto q^{2 m} \\
& \left(\frac{1}{1-G}\right)^{2}=\frac{1-q z}{1-q^{2} z} \text { singularity } 1 / q^{2} \text { of order } 2 \leadsto m q^{2 m}
\end{aligned}
$$

Costs for Euclid algorithm

- Theorem [Vallée-Lhote] $L:=$ number of steps

$$
\mathbb{E}_{m}[L]=\frac{q-1}{q} \cdot m \quad \mathbb{V}_{m}[L]=\frac{q-1}{q^{2}} \cdot m
$$

Gaussian law

- Theorem [B.-Nakada-Natsui-Vallée]
N := number of non-zero monomials

$$
\mathbb{E}_{m}[N]=2 \cdot \frac{q-1}{q} \cdot m+O(1) \quad \mathbb{V}_{m}[N]=2 \cdot \frac{q-1}{q^{2}} \cdot m+O(1)
$$

Gaussian law

Asymptotic Gaussian law

Let R be a cost defined on Ω
$\mathbb{P}_{m}\left[(P, Q) \in \Omega_{m}, \frac{R(P, Q)-a_{m}}{\sqrt{b_{m}}} \leq y\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-t^{2} / 2} d t+r_{m}(y)$
$\left(r_{m}\right)_{m}$ is sequence of functions $r_{m}: \mathbb{R} \rightarrow \mathbb{R}$, with

$$
\lim _{m \rightarrow \infty} \sup \left\{r_{m}(y): y \in \mathbb{R}\right\}=0
$$

$$
\mathbb{E}_{m}[R] \sim a_{m}, \quad \mathbb{V}_{m}[R] \sim b_{m}
$$

- Combinatorics is ubiquitous
- An interplay between discrete and continuous structures $~$ Concrete mathematics: A Foundation for Computer Science [Graham-Knuth-Patashnik]
- A domain of inter/transdisciplinarity

