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What is combinatorics?

Enumerative combinatorics (permutations, partitions,
maps, etc.)
Analytic combinatorics (complex analysis)
Algebraic combinatorics
Probabilistic combinatorics
Bijective combinatorics
Extremal combinatorics
Combinatorics on words
Graph theory

Geometric combinatorics
Topological combinatorics
Arithmetic combinatorics



What is combinatorics?
Enumerative combinatorics
Analytic combinatorics
Algebraic combinatorics
Probabilistic combinatorics
Bijective combinatorics
Extremal combinatorics
Combinatorics on words
Graph theory

Partition theory, Design theory, Order theory, Matroid
theory
Combinatorial optimization, Coding theory, Discrete and
computational geometry, Combinatorics and dynamical
systems
Combinatorics and physics



Some influential people in France

M.-P. Schützenberger
M. Nivat
P. Flajolet
X. Viennot
M. Bousquet-Mélou
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On enumerative combinatorics

Most of the questions that we study start like this: given a set
of discrete objects, equipped with a notion of size (say
permutations on n elements), how many objects of size n are
there? Of course you do not want a number for particular
values of n but a formula or, more realistically, a
characterisation (e.g. a recurrence relation) valid for general n.

Sometimes, more important than getting a counting formula
for a certain problem is the fact that to arrive at such a
formula requires information about the combinatorial structure
under study. Hence, counting is sometimes just a pretext and
the important thing is to understand, or discover, a structure
in some discrete objects.

M. Bousquet-Mélou, EMS Newsletter 2017.



On enumerative combinatorics

The objects that we (try to) count come from various
branches of mathematics, including probability (of course the
interaction with this area is particularly strong via discrete
probability), algebra (e.g. in connection with representations
of classical groups and algebras) and mathematical physics
(via the study of discrete models, like the famous Ising model).

M. Bousquet-Mélou, EMS Newsletter 2017.



On enumerative combinatorics

Most French combinatorialists work in computer science
departments. There are several reasons for that, partly
historical but mostly scientific: there is no real boundary
between some parts of theoretical computer science (e.g. the
study of formal languages) and discrete mathematics. There is
also a strong interaction between enumerative combinatorics
and the study of the complexity of algorithms, as launched a
long time ago by Don Knuth and pursued in France by
Philippe Flajolet and his school. The rough idea is that in
order to understand the complexity of an algorithm, one has to
determine how many entries of a given length get processed in
a given time – a well-posed bivariate counting problem.

M. Bousquet-Mélou, EMS Newsletter 2017.



Alea

Study of discrete random structures coming from various
disciplines: fundamental computer science and
algorithmics, discrete mathematics and probability,
statistical physics...
Objects: trees, words, permutations, paths, cellular
automata, etc.
Methods: enumeration, asymptotic properties and
analytic combinatorics, probabilistic properties, random
generation...



Domaine un peu paradoxal, la combinatoire se présente
comme

simple et complexe
pauvre et riche
facile et difficile
pure et appliquée

Elle occupe aujourd’hui une place quasi-centrale en
mathématiques en particulier à cause de des interactions

algèbre, théorie des nombres, probabilités, topologie, géométrie
algébrique

Informatique, mathématiques, physique (statistique)

Extrait de la description du cours au collège de France de
Timothy Gowers, 2021.



Generating functions

Generating functions are used to describe families of
combinatorial objects. Let C denote the family of objects to
count.

A combinatorial class is a set C, equipped with a size function
|.| : C → N, such that for any n the set Cn of objects of size n
is finite. Let cn stand for its cardinality. The generating
function of C is the formal power series

C (x) =
∞∑
n=0

cnx
n.

There are various natural operations on generating functions
such as addition, multiplication, differentiation, etc., which
have a combinatorial meaning.



A symbolic dictionary
The generating function of C is the formal power series

C (x) =
∞∑
n=0

cnx
n,

where cn is the number of elements of size n

Disjoint union ←→ addition
Product ←→ pairs C = A× B with |(a, b)| = |a|+ |b|
Sequence C = ∪k≥0Ak c = a1 · · · ak

←→ C (x) =
1

1− A(x)
=
∑
k≥0

A(x)k (A0 = ∅)

Differentiation ←→ expectation
Example: Let C be the set of all finite binary words, with size
given by the length. Then

A(x) = 2x , C (x) =
1

1− A(x)
=

1
1− 2x

, cn = 2n.
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Counting binary trees

Let Cn be the number of binary trees that have n binary
branching nodes, and hence n +1 external nodes.
A tree is a connected graph without cycle. A (complete)
binary rooted plane tree is such that:

there is a distinguished vertex, called the root;
the tree is drawn from the root, so there is a natural
genealogical structure, and in particular, a notion of
children of a vertex;
the children of every vertex are ordered from left to right.
A complete binary tree is such that all vertices have arity
0 or 2.

https://www.irif.fr/~chapuy/
/chapuyCombinatoricsNotesMPRI.pdf

https://www.irif.fr/~chapuy//chapuyCombinatoricsNotesMPRI.pdf
https://www.irif.fr/~chapuy//chapuyCombinatoricsNotesMPRI.pdf


Counting binary trees
Let Cn be the number of binary trees that have n binary
branching nodes, and hence n +1 external nodes.

c0 = 1, c1 = 1, c2 = 2, c3 = 5, c4 = 14, c5 = 42

From THE book Analytic combinatorics [Flajolet-Sedgewick]

generating functions and complex analysis,
analysis of the singularities



Counting binary trees

Let Cn be the number of binary trees that have n binary
branching nodes, and hence n +1 external nodes.



Counting binary trees

Let Cn be the number of binary trees that have n binary
branching nodes, and hence n +1 external nodes.

C = 2 ∪ (C, •, C) C (z) =
∑
n≥0

cnz
n

C (z) = 1 + zC (z)2 C (z) =
1−
√
1− 4z
2z

cn =
1

n + 1

(
2n
n

)
cn ∼

1√
π

(1/4)nn−3/2

These numbers are known as the Catalan numbers.



From singularities to asymptotic combinatorics

Let Q(x) be a polynomial with complex coefficients.
Write

Q(x) =
k∏

i=1

(1− γix)di

with distinct γi ’s.
Let

A(x) =
P(x)

Q(x)
=
∑
n

anx
n

be a formal power series, with P polynomial with
deg(P) < deg(Q). Then, for all n

an = R1(n)γn1 + · · ·+ Rk(n)γnk

where R1, · · · ,Rk are polynomials with degRi < di .



Combinatorics on words



Combinatorics on words

A wide field of applications: automata theory, bio-informatics,
computational biology, algorithms on strings, text
compression, number theory, Schrödinger operators.

Among the main questions: existence of patterns (e.g.,
squarefree words), repetitions and regularities, counting
configurations, statistical properties.



[Lothaire, Algebraic combinatorics on words,
N. Pytheas Fogg, Substitutions in dynamics, arithmetics and

combinatorics
CANT Combinatorics, Automata and Number theory]



Unavoidable regularities and patterns

The story starts with the work of A. Thue (1863–1922) with
the existence of square-free infinite words.

Thue was interested in finding long sequences with few
repetitions.

A word is square-free if it avoids the pattern xx .



Squares cannot be avoided on infinite binary words.

aa, ab, ba, bb

aba, bab

abaa, abab, baba, babb



The Thue-Morse substitution

Overlaps can be avoided on a binary alphabet. Consider the
Thue-Morse substitution

σ : a→ ab, b → ba

σ(a) = ab

σ2(a) = abba

σ3(a) = abbabaab

The infinite word σ∞(a) is overlap-free: it has no factor of the
form

uvuvu

for some words u, v with u nonempty



σ∞(a) = abbabaabbaababbabaababba · · ·

The word t derived from the Thue–Morse by the inverse
morphism A→ abb,B → ab,C → a is square-free

t = ABCACBABCBA · · ·



σ∞(a) = abbabaabbaababbabaababba · · ·

σ∞a = abb | ab | a | abb | a | ab | abb | ab | a | ab | abb | a · · ·

The word t derived from the Thue–Morse by the inverse

morphism A→ abb,B → ab,C → a is square-free

t = ABCACBABCBA · · ·



On Dejean’s conjecture
A repetition in a word w is a pair of words (p, q) such
that pq is a factor of w , p is nonempty, and q is a prefix
of pq.
The exponent of a repetition (p, q) is |pq||q| .
Squares are repetitions of exponent 2.
A word is x-free if it does not contain a repetition of
exponent y with y ≥ x .

For an integer k ≥ 2, the repetition threshold R(k) for k
letters is the infimum over the set of x such that there
exists an infinite x-free word over a k-letter alphabet.
Dejean’s conjecture has been proven in 2011 [Rao, 2011)
and (Currie and Rampersad, 2011]: the repetition
treshold, i.e., the largest avoidable fractional power in an
infinite word on k letters is k/(k − 1).

R(2) = 2, R(3) = 7/4, R(4) = 7/5, R(k) =
k

k − 1
, k ≥ 5
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Word combinatorics

Let A be a finite alphabet and let u ∈ AN be an infinite word

u = abaababaabaababaababaab · · ·

u = abaababaab aa︸︷︷︸ babaababaab · · ·
aa is a factor, bb is not a factor



Toward symbolic dynamics

Let A be a finite alphabet and let u ∈ AN be an infinite word

u = abaababaabaababaababaab · · ·

u = abaababaab aa︸︷︷︸ babaababaab · · ·
aa is a factor, bb is not a factor

The shift maps u = (un)n∈N to (un+1)n∈N

u = abaababaabaababaababaab · · ·

S(u) = baababaabaababaababaab · · ·



Discrete dynamical system

A discrete dynamical system is given by a map T acting on a
set X

T : X → X

Discrete stands for discrete time
The map T is the law of time evolution

We consider orbits/trajectories of points of X under the action
of the map T

{T nx | n ∈ N}

How well are the orbits distributed?
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A trajectory for T : X → X

x

T (x) T 2(x)

T 3(x)
T 4(x)

T 5(x)
T 6(x)

T 7(x)

c© Timo Jolivet
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What’s the point of this formalization?

The mathematical formalization of discrete
dynamical system offers the framework of ergodic
theory



What’s the point of this formalization?

The mathematical formalization of discrete
dynamical system offers the framework of ergodic
theory

Topological dynamics describes the
qualitative/topological behaviour of trajectories
The map T is continuous and the space X is
compact

Ergodicity describes the long term statistical
behaviour of orbits
The space X is endowed with a probability
measure and T is measurable (X ,T ,B, µ)



Ergodic theorem

B

x

T (x) T 2(x)

T 3(x)
T 4(x)

T 5(x)
T 6(x)

T 7(x)

Among the first N points of the orbit of x , how many of them
enter B?

How often do they visit B?

lim
N→∞

1
N

∑
0≤n<N

1B(T nx) = µ(P) a.e. x
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Ergodic theorem

B

x

T (x) T 2(x)

T 3(x)
T 4(x)

T 5(x)
T 6(x)

T 7(x)

Let 1B be the characteristic function of B

Among the first N points of the orbit of x , how many of them
enter B?

∑
0≤n<N 1B(T nx)

How often do they visit B? limN→∞
1
N

∑
0≤n<N 1B(T nx)

lim
N→∞

1
N

∑
0≤n<N

1B(T nx) = µ(P) a.e. x



Ergodic theorem
We are given a dynamical system (X ,T ,B, µ) with T : X → X

Average time values: one particle over the long term

Average space values: all particles at a particular instant

Ergodicity

µ(B) = µ(T−1B) T -invariance

T−1B = B =⇒ µ(B) = 0 or 1 ergodicity

Ergodic theorem space average= time average

f ∈ L1(µ) lim
N→∞

1
N

∑
0≤n<N

f (T nx) =

∫
f dµ a.e. x



Numeration dynamics

Numeration dynamical systems are simple algorithms that
produce digits in classical representation systems

Decimal expansions

T : [0, 1]→ [0, 1], x 7→ 10x − [10x ] = {10x}



Numeration dynamics
Numeration dynamical systems are simple algorithms that
produce digits in classical representation systems

Decimal expansions

T : [0, 1]→ [0, 1], x 7→ 10x − [10x ] = {10x}

x1 = T (x) = 10x − [10x ] = 10x − a1

x =
a1

10
+

x1

10
x2 = T (x1) = T 2(x) a2 = b10T (x)c

x =
a1

10
+

a2

102 +
x2

102 =
∞∑
i=1

ai10−i



Numeration dynamics
Numeration dynamical systems are simple algorithms that
produce digits in classical representation systems

Decimal expansions

T : [0, 1]→ [0, 1], x 7→ 10x − [10x ] = {10x}

The map T produces the digits

an = b10T n−1(x)c

The action of T can be seen as a shift on the sequence of
digits

x ∼ a1a2a3a4 · · · T (x) ∼ a2a3a4 · · ·



Multiplication by 10 on [0, 1]
X = [0, 1] T : x 7→ 10 x (mod 1)

P =
{[

i
10 ,

i+1
10

[
: 0 ≤ i ≤ 9

}

0

1
2

3

4

5

6
7

8

9

Orbit of π − 3
0.14159265358979312 · · ·

Codings ⇐⇒ decimal expansions

c© Timo Jolivet
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Multiplication by 10 on [0, 1]
X = [0, 1] T : x 7→ 10 x (mod 1)

P =
{[

i
10 ,

i+1
10

[
: 0 ≤ i ≤ 9

}

0

1
2

3

4

5

6
7

8

9

Orbit of π − 3
0.1

4159265358979312 · · ·

Codings ⇐⇒ decimal expansions

c© Timo Jolivet



Multiplication by 10 on [0, 1]
X = [0, 1] T : x 7→ 10 x (mod 1)

P =
{[

i
10 ,

i+1
10

[
: 0 ≤ i ≤ 9

}

0

1
2

3

4

5

6
7

8

9

Orbit of π − 3
0.14

159265358979312 · · ·

Codings ⇐⇒ decimal expansions

c© Timo Jolivet



Multiplication by 10 on [0, 1]
X = [0, 1] T : x 7→ 10 x (mod 1)

P =
{[

i
10 ,

i+1
10

[
: 0 ≤ i ≤ 9

}

0

1
2

3

4

5

6
7

8

9

Orbit of π − 3
0.141

59265358979312 · · ·

Codings ⇐⇒ decimal expansions

c© Timo Jolivet



Multiplication by 10 on [0, 1]
X = [0, 1] T : x 7→ 10 x (mod 1)

P =
{[

i
10 ,

i+1
10

[
: 0 ≤ i ≤ 9

}

0

1
2

3

4

5

6
7

8

9

Orbit of π − 3
0.1415

9265358979312 · · ·

Codings ⇐⇒ decimal expansions

c© Timo Jolivet



Multiplication by 10 on [0, 1]
X = [0, 1] T : x 7→ 10 x (mod 1)

P =
{[

i
10 ,

i+1
10

[
: 0 ≤ i ≤ 9

}

0

1
2

3

4

5

6
7

8

9

Orbit of π − 3
0.14159

265358979312 · · ·

Codings ⇐⇒ decimal expansions

c© Timo Jolivet



Multiplication by 10 on [0, 1]
X = [0, 1] T : x 7→ 10 x (mod 1)

P =
{[

i
10 ,

i+1
10

[
: 0 ≤ i ≤ 9

}

0

1
2

3

4

5

6
7

8

9

Orbit of π − 3
0.141592

65358979312 · · ·

Codings ⇐⇒ decimal expansions

c© Timo Jolivet



Multiplication by 10 on [0, 1]
X = [0, 1] T : x 7→ 10 x (mod 1)

P =
{[

i
10 ,

i+1
10

[
: 0 ≤ i ≤ 9

}

0

1
2

3

4

5

6
7

8

9

Orbit of π − 3
0.1415926

5358979312 · · ·

Codings ⇐⇒ decimal expansions

c© Timo Jolivet



Multiplication by 10 on [0, 1]
X = [0, 1] T : x 7→ 10 x (mod 1)

P =
{[

i
10 ,

i+1
10

[
: 0 ≤ i ≤ 9

}

0

1
2

3

4

5

6
7

8

9

Orbit of π − 3
0.14159265

358979312 · · ·

Codings ⇐⇒ decimal expansions

c© Timo Jolivet



Multiplication by 10 on [0, 1]
X = [0, 1] T : x 7→ 10 x (mod 1)

P =
{[

i
10 ,

i+1
10

[
: 0 ≤ i ≤ 9

}

0

1
2

3

4

5

6
7

8

9

Orbit of π − 3
0.141592653

58979312 · · ·

Codings ⇐⇒ decimal expansions

c© Timo Jolivet



Multiplication by 10 on [0, 1]
X = [0, 1] T : x 7→ 10 x (mod 1)

P =
{[

i
10 ,

i+1
10

[
: 0 ≤ i ≤ 9

}

0

1
2

3

4

5

6
7

8

9

Orbit of π − 3
0.1415926535

8979312 · · ·

Codings ⇐⇒ decimal expansions

c© Timo Jolivet



Multiplication by 10 on [0, 1]
X = [0, 1] T : x 7→ 10 x (mod 1)

P =
{[

i
10 ,

i+1
10

[
: 0 ≤ i ≤ 9

}

0

1
2

3

4

5

6
7

8

9

Orbit of π − 3
0.14159265358

979312 · · ·

Codings ⇐⇒ decimal expansions

c© Timo Jolivet



Multiplication by 10 on [0, 1]
X = [0, 1] T : x 7→ 10 x (mod 1)

P =
{[

i
10 ,

i+1
10

[
: 0 ≤ i ≤ 9

}

0

1
2

3

4

5

6
7

8

9

Orbit of π − 3
0.141592653589

79312 · · ·

Codings ⇐⇒ decimal expansions

c© Timo Jolivet



Multiplication by 10 on [0, 1]
X = [0, 1] T : x 7→ 10 x (mod 1)

P =
{[

i
10 ,

i+1
10

[
: 0 ≤ i ≤ 9

}

0

1
2

3

4

5

6
7

8

9

Orbit of π − 3
0.1415926535897

9312 · · ·

Codings ⇐⇒ decimal expansions

c© Timo Jolivet



Multiplication by 10 on [0, 1]
X = [0, 1] T : x 7→ 10 x (mod 1)

P =
{[

i
10 ,

i+1
10

[
: 0 ≤ i ≤ 9

}

0

1
2

3

4

5

6
7

8

9

Orbit of π − 3
0.14159265358979312 · · ·

Codings ⇐⇒ decimal expansions
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From numeration dynamics to symbolic dynamics

Decimal expansion T : [0, 1]→ [0, 1], x 7→ {10x}

Beta-transformation T : [0, 1]→ [0, 1], x 7→ {βx}

Continued fractions T : [0, 1]→ [0, 1], x 7→ {1/x}



From numeration dynamics to symbolic dynamics
Decimal expansion T : [0, 1]→ [0, 1], x 7→ {10x}

Beta-transformation T : [0, 1]→ [0, 1], x 7→ {βx}

β > 1 x =
∞∑
i=1

aiβ
−i

Continued fractions T : [0, 1]→ [0, 1], x 7→ {1/x}

x =
1

a1 + x1
=

1

a1 +
1

a2 +
1

a3 +
1

a4 + · · ·



Word combinatorics vs. symbolic dynamics

Let u ∈ AN be an infinite word.

Word combinatorics
Study of the number of factors of a given length (factor

complexity), frequencies, powers

Symbolic dynamics Let

Xu := {Snu | n ∈ N} with the shift S((un)n) = (un+1)n

(Xu, S) is a symbolic dynamical system
Study of invariant measures, recurrence properties,
finding geometric representations, spectral properties



From word combinatorics to symbolic dynamics

Let A be a finite alphabet and let u ∈ AN be an infinite word

Let S stand for the shift map

Xu := {Snu | n ∈ N} ⊂ AN

(Xu, S) is a symbolic dynamical system

Xu = {v ; Lv ⊂ Lu}

This is the set of infinite words whose factors belong to the
language Lu of u, i.e., the set of factors of u



Symbolic dynamics

1898, Hadamard: Geodesic flows on surfaces of negative
curvature
1912, Thue: Prouhet-Thue-Morse substitution

σ : a 7→ ab, b 7→ ba

1921, Morse: Symbolic representation of geodesics on a
surface with negative curvature. Recurrent geodesics

From geometric dynamical systems to
symbolic dynamical systems and backwards

Given a geometric system, can one find a good partition?
And vice-versa?



Symbolic dynamics

1898, Hadamard: Geodesic flows on surfaces of negative
curvature
1912, Thue: Prouhet-Thue-Morse substitution

σ : a 7→ ab, b 7→ ba

1921, Morse: Symbolic representation of geodesics on a
surface with negative curvature. Recurrent geodesics

From geometric dynamical systems to
symbolic dynamical systems and backwards

Given a geometric system, can one find a good partition?
And vice-versa?



A substitution on words: the Fibonacci substitution
Definition A substitution σ is a morphism of the free
monoid σ(uv) = σ(u)σ(v)

Positive morphism of the free group, no cancellations

Example

σ : 1 7→ 12, 2 7→ 1

1
12
121
12112
12112121

σ∞(1) = 121121211211212 · · ·



A substitution on words: the Fibonacci substitution
Definition A substitution σ is a morphism of the free
monoid σ(uv) = σ(u)σ(v)

Positive morphism of the free group, no cancellations

Example

σ : 1 7→ 12, 2 7→ 1 σ∞(1) = 121121211211212 · · ·



A substitution on words: the Fibonacci substitution
Definition A substitution σ is a morphism of the free
monoid σ(uv) = σ(u)σ(v)

Positive morphism of the free group, no cancellations

Example

σ : 1 7→ 12, 2 7→ 1 σ∞(1) = 121121211211212 · · ·

Why the terminology Fibonacci word?

σn+1(1) = σn(12) = σn(1)σn(2)

σn(2) = σn−1(1)

σn+1(1) = σn(1)σn−1(1)

The length of the word σn(1) satisfies the Fibonacci recurrence



How to define a notion of order for an infinite
word?

Consider the Fibonacci word

u = σ∞(a) = abaababaabaababaababaabaababaabaababaababaa · · ·

There is a simple algorithmic way to construct it
(cf. Kolmogorov complexity)



How to define a notion of order for an infinite
word?

Consider the Fibonacci word

u = σ∞(a) = abaababaabaababaababaabaababaabaababaababaa · · ·

There are few local configurations = factors
A factor is a word made of consecutive occurrences of

letters
ab is a factor, bb is not a factor of the Fibonacci word

But
· · · aaaaaaaaaaaabaaaaaaaaaaa · · ·

has as many factors of length n as

· · · abaababaabaababaababaabaababaabaababaababaa · · ·

The Fibonacci word has n + 1 factors of length n



How to define a notion of order for an infinite
word?

Consider the Fibonacci word

u = σ∞(a) = abaababaabaababaababaabaababaabaababaababaa · · ·

Consider frequencies of occurrences of factors

Symbolic discrepancy

∆N = max
i∈A
||u0u1 . . . uN−1|i − N · fi |

if each letter i has frequency fi in u

fi = lim
N→∞

|u0 · · · uN−1|i
N

The Fibonacci word has bounded symbolic discrepancy



Complexity and periodicity
Let u ∈ AN be an infinite word

The factor complexity pu(n) counts the number of factors of
length n

Theorem [Morse-Hedlund 1940]
If there exists n such that pu(n) ≤ n, then u is ultimately
periodic

There exists T such that un = un+T for all n large enough

Proof
We can assume pu(1) ≥ 2
There exists 1 ≤ k ≤ n − 1 such that pu(k) = pu(k + 1)

Every factor w of length k admits a unique letter a ∈ A
such that wa is also a factor of u
Take a factor of length k that occurs at least twice in u



Sturmian words

Sturmian words [Morse-Hedlund, 1940] pu(n) = n + 1 for all n



Sturmian words
A word u ∈ {0, 1}N is Sturmian if pu(n) = n + 1 for all n

The Fibonacci word has n + 1 factors of length n

Sturmian words are the words having the lowest factor
complexity among non-periodic words
They are codings of discrete lines

1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1

2

2

2

2

21
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Sturmian words

Sturmian words are defined as the infinite words with factor
complexity n + 1 for all n

0110110101101101



Sturmian words

Sturmian words are defined as the infinite words with factor
complexity n + 1 for all n

0110110101101101

11 and 00 cannot occur simultaneously



Sturmian words
Sturmian words are defined as the infinite words with factor
complexity n + 1 for all n

0110110101101101

One considers the substitutions

σ0 : 0 7→ 0, σ0 : 1 7→ 10

σ1 : 0 7→ 01, σ1 : 1 7→ 1

One has

01 1 01 1 01 01 1 01 1 01 = σ1(0101001010)

0 10 10 0 10 10 = σ0(011011)

01 1 01 1 = σ1(0101)

01 01 = σ1(00)



Sturmian words
Sturmian words are defined as the infinite words with factor
complexity n + 1 for all n

0110110101101101

One considers the substitutions

σ0 : 0 7→ 0, σ0 : 1 7→ 10

σ1 : 0 7→ 01, σ1 : 1 7→ 1

The Sturmian words of slope α are provided by an infinite
composition of substitutions

lim
n→+∞

σa1
0 σ

a2
1 · · · σ

a2n
2n σ

a2n+1
2n+1(0)

where the ai are produced by the continued fraction expansion
of α



Continued fractions

We represent real numbers in (0, 1) as

1

a1 +
1

a2 +
1

a3 +
1

a4 + · · ·

with partial quotients (digits) ai ∈ N∗



Continued fractions
One represents α as

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·
in order to find good rational approximations of α

pn
qn

= a0 +
1

a1 +
1

a2 +
1

a3 + · · ·+
1
an

|α− pn/qn] ≤ 1/q2
n

[http://images.math.cnrs.fr/Nombres-et-representations.html]
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Complexity and periodicity

Theorem [Morse-Hedlund 1940]
If there exists n such that u has at most n factors of length n,
then u is ultimately periodic



Nivat’s conjecture
We now consider two-dimensional words u ∈ AZ2 and
rectangular factors
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Nivat’s conjecture [ICALP-1997]
If there exists m, n such that u admits at most mn rectangular
factors of size (m, n), i.e.,

pu(m, n) ≤ mn,

then u is periodic.

Periodic means periodic along one direction. There exists a
non-zero vector (s, t) such that u(m, n) = u(m + s, n + t) ∀(m, n).



Nivat’s conjecture
We now consider two-dimensional words u ∈ AZ2 and
rectangular factors
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Nivat’s conjecture
We now consider two-dimensional words u ∈ AZ2 and
rectangular factors
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Nivat’s conjecture [ICALP-1997]
If there exists m, n such that u admits at most mn rectangular
factors of size (m, n), i.e.,

pu(m, n) ≤ mn,

then u is periodic.

Periodic means periodic along one direction. There exists a
non-zero vector (s, t) such that u(m, n) = u(m + s, n + t) ∀(m, n).



Nivat’s conjecture is not about full periodicity

A word in AZd is fully periodic if and only if its rectangular
factor complexity function is bounded.

Proof
One has pu(1, · · · , 1, n, 1, · · · , 1) ≤ C for all n.
Apply Morse-Hedlund’s theorem.



Nivat’s conjecture is not an equivalence

There exist periodic words with high factor complexity

There exists u periodic such that pu(m, n) = 2m+n−1 for all
(m, n).

Take a 1D word x with factor complexity px(n) = 2n for
all n (e.g., Champernowne construction).

Define u ∈ {0, 1}Z2 by u(m, n) := x(0,m + n) for all
(m, n).

It has period (−1, 1).



Nivat’s conjecture is a two-dimensional conjecture

Take d = 3
Define u ∈ {0, 1}Z3 as

um,0,0 = 1 for all m
u0,n0,p = 1 for all p
with n0 6= 0
um,n,p = 0 otherwise

One has for 2 ≤ n ≤ n0

pu(n, · · · , n) = 2n2 + 1 < n3

Note that u is a sum of two periodic words

c©Kari-Szabados



Nivat’s conjecture is about rectangular factors
What about general patterns? [Cassaigne]

If pu(D) ≤ |D| for some D, is u periodic?

Not necessarily, even if the pattern D is an hv -convex
polyomino (if two points in the same row or column are in the
pattern, then all integer points on the segment between them
should be included too)

What about convex patterns (the trace in Z2 of convex sets in
R2)?



Some results toward Nivat’s conjecture

The following conditions imply periodicity

pu(2, n) ≤ 2n or pu(n, 2) ≤ 2n for some n
[Sander-Tijdeman 2002]
pu(m, n) ≤ 1

144mn for some (m, n)
[Epifanio-Koskas-Mignosi 2003]
pu(m, n) ≤ 1

16mn for some (m, n) [Quas-Zamboni 2004]
Combinatorial approach
pu(m, n) ≤ 1

2mn for some (m, n) [Cyr-Kra 2015]
Dynamical approach
pu(m, 3) ≤ 3mn for some (m, n) [Cyr-Kra 2016]
pu(m, n) ≤ mn for infinitely many pairs (m, n)
[Kari-Szabados 2015] Algebraic approach



Sturmian words

Sturmian words are the words that have n + 1 factors of length
n for all n
They are codings of discrete lines
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Discrete planes and 2D Sturmian words
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Discrete planes and 2D Sturmian words
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2D Sturmian words [B.-Vuillon]
pu(m, n) = mn + m + n for all (m, n)

mn+m+n

2D Sturmian words are
codings of discrete planes
they have low complexity function
quasicrystals



The geometry of discrete objects

can be
algorithmic/computational ex: convex hull, Delaunay
triangulation
discrete/digital ex: discretization, segmentation, discrete
convexity
discrete differential ex: topological combinatorics,
geometric estimators
combinatorial ex: packings, hyperplane arrangements



Discrete geometry Digital geometry

Analysis of geometric problems on objects defined on regular
lattices

[D. Coeurjoly, Digital geometry in a Nutshell]



Discrete geometry Digital geometry
Analysis of geometric problems on objects defined on regular
lattices

Among the most basic primitives one finds discrete lines and
planes

[D. Coeurjoly, Digital geometry in a Nutshell]



Discrete geometry Digital geometry
Analysis of geometric problems on objects defined on regular
lattices

Example of application: segmentation into maximal discrete
segments

[D. Coeurjoly, Digital geometry in a Nutshell]



Digital geometry

How to discretize a line in the space?

There are the usual difficulties related to discrete
geometry
There are further difficulties due to the codimension > 1
for discrete lines

[D. Coeurjoly, Digital geometry in a Nutshell
http://liris.cnrs.fr/david.coeurjolly/doku/doku.php]



Euclid first axiom

Given two points A and B , there exists a unique line that
contains them
This is no more true in the discrete case

[D. Coeurjoly, Digital geometry in a Nutshell]



Words, tilings and

quasicrystals



A crystal

A periodic arrangement of atoms



Quasiperiodicity and quasicrystals
Quasicrystals are solids discovered in 84 with an atomic
structure that is both ordered and aperiodic
[Shechtman-Blech-Gratias-Cahn]

An aperiodic system may have long-range order

(cf. Aperiodic tilings [Wang’61, Berger’66, Robinson’71,...])

Which mathematical models for quasicrystals?

There are mainly two methods for producing quasicrystals
Substitutions
Cut and project schemes

[WHAT IS.. a Quasicrystal? M. Senechal]



Which models for quasicrystals?
“His discovery was extremely controversial. In the course of
defending his findings, he was asked to leave his research
group. However, his battle eventually forced scientists to
reconsider their conception of the very nature of matter.”
Aperiodic mosaics, such as those found in the medieval Islamic
mosaics of the Alhambra Palace in Spain and the Darb-i Imam
Shrine in Iran, have helped scientists understand what
quasicrystals look like at the atomic level. In those mosaics, as
in quasicrystals, the patterns are regular - they follow
mathematical rules - but they never repeat themselves.

When scientists describe Shechtman’s quasicrystals, they use a
concept that comes from mathematics and art : the golden
ratio.

c© Communiqué de presse de l’Académie royale suédoise des
sciences 2011



Cut and project schemes
Projection of a “plane” slicing through a higher dimensional

lattice

The order comes from the lattice structure
The nonperiodicity comes from the irrationality of the
normal vector of the “plane”

Sturmian words are 1D quasicrystals



Toward long-range aperiodic order

What is meant by quasiperiodicity?



The objects under consideration
Infinite words (sequences with values in a finite alphabet)

abaababaabaababaababaabaababaabaababaababaa · · ·

Tilings

A tiling of the plane is a collection of tiles that covers
the plane with no overlaps



Substitutions

Substitutions on words and symbolic dynamical systems
Substitutions on tiles : inflation/subdivision rules, tilings
and point sets

Tilings Encyclopedia http://tilings.math.uni-bielefeld.de/
[E. Harriss, D. Frettlöh]



Wang tiles
These are square tiles with colors on each side and colors have
to match.

c© Wikipedia



A decision problem (1961)

Can one tile the plane with a given set of Wang tiles?



The Eternity game

A price of 2 millions of dollars!
256 Wang tiles to place on a 16× 16 grid

The number of solutions is estimated to 20 000

https://fr.wikipedia.org/wiki/Eternity_(jeu)

https://fr.wikipedia.org/wiki/Eternity_(jeu)


A conjecture
If a set of Wang tiles can pave the plane, it can pave it in a
periodic way

We then can decide the domino problem

which turned to be false

There exist aperiodic sets of tiles!

https://www.lri.fr/~aubrun/exposes/SML_Aubrun.pdf
http://images.math.cnrs.fr/Dominos-aperiodiques.html

https://www.lri.fr/~aubrun/exposes/SML_Aubrun.pdf
http://images.math.cnrs.fr/Dominos-aperiodiques.html


Aperiodic sets of tiles
They only allow the production of aperiodic tilings

• Berger, 1964 20426 tiles (computability)
• Berger, 1964 104 tiles
• Robinson, 1967 52 tiles (computability and substitutions)
• Penrose, 1976 34 tiles (substitutions)

And the actual record is

• E. Jeandel and M. Rao, 2015 11 tiles and 4 colors



Aperiodic sets of tiles
They only allow the production of aperiodic tilings
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Penrose tiling

This aperiodic tiling is also generated by cut and projection
and by substitution
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Penrose tiling

This aperiodic tiling is also generated by cut and projection
and by substitution



Combinatorics and analysis

of algorithms



Analysis of algorithms
• Analysis of algorithms [Knuth’63]

probabilistic, combinatorial, and analytic methods

• Analytic combinatorics [Flajolet-Sedgewick]

generating functions and complex analysis,
analysis of the singularities

• Dynamical analysis of algorithms [Vallée]

Transfer operators ; Generating functions of Dirichlet type



Average analysis of algorithms

Remark: Worst case vs. average analysis of algorithms

Elements for an average analysis
An algorithm A whose inputs belong to some set Ω

A cost function X : Ω→ R+ that describes the algorithm
(bit complexity, size of the output, memory/space
complexity, . . . )

A size function: Ω =
⋃
n

Ωn

Each set Ωn is endowed with a probability distribution
(usually the uniform distribution)
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Average analysis of algorithms
We consider a cost function X : Ω→ R+

[mean value] Compute the asymptotic mean value of X

En[X ] ∼
n→∞

ex: what is the average bit complexity of the algorithm when
the input size n is large? Is it linear in n? Quadratic in n?

[variance] Compute the asymptotic of the variance

Vn[X ] ∼
n→∞

ex: is the probability to be far from the mean value
asymptotically close to 0?

[limit law] what is the limit law of X
X − En[X ]

σn(X )
→

n→∞

ex: what is asymptotically the probability that X is in the
interval [a, b]?
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asymptotically close to 0?

[limit law] what is the limit law of X
X − En[X ]

σn(X )
→

n→∞
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On the Euclidean algorithm

We start from two positive integers u0 and u1

u0 = u1

[
u0

u1

]
+ u2

u1 = u2

[
u1

u2

]
+ u3

...

um−1 = um

[
um−1

um

]
+ um+1

um+1 = gcd(u0, u1)

um+2 = 0



Euclid algorithm and continued fractions

We start with two coprime integers u0 and u1

u0 = u1a1 + u2



Euclid algorithm and continued fractions

We start with two coprime integers u0 and u1

u0 = u1a1 + u2

...

um−1 = umam + um+1

um = um+1am+1 + 0

um+1 = 1 = gcd(u0, u1)



Euclid algorithm and continued fractions

We start with two coprime integers u0 and u1

u0 = u1a1 + u2

u1

u0
=

1
a1 +

u2
u1

u1/u0 =
1

a1 +
1

a2 + · · ·+ 1
am+ 1

am+1



On the number of Euclidean divisions for Euclid’s
algorithm

Lamé (1850): the worst case is linear w.r.t. the input
binary size

Heilbron (69) and Dixon (70): the mean number of
divisions is linear w.r.t. the input binary size

Hensley (1994): the number of divisions follows a
gaussian limit law



Number of steps for the Euclid algorithm

Let L(u, v) stand for number of steps with 0 < v < u

Worst case

L(u, v) = O(log v) (≤ 5 log10 v , Lamé 1844)



Number of steps for the Euclid algorithm
Let L(u, v) stand for number of steps with 0 < v < u

Worst case

L(u, v) = O(log v) (≤ 5 log10 v , Lamé 1844)

Mean case 0 < v < u ≤ N gcd(u, v) = 1
Consider

Ωm := {(u1, u2) ∈ N2, 0 ≤ u1, u2 ≤ m}

endowed with the uniform distribution

EN [L] ∼ 12 log 2
π2 · logN

[see Knuth, Vol. 2 ]



Number of steps for the Euclid algorithm

Let L(u, v) stand for number of steps with 0 < v < u

Worst case

L(u, v) = O(log v) (≤ 5 log10 v , Lamé 1844)

Mean case 0 < v < u ≤ N gcd(u, v) = 1

EN [L] ∼ 12 log 2
π2 · logN + η + O(N−γ)

η Porter’s constant

asymptotically normal distribution

[Heilbronn’69,Dixon’70,Porter’75,Hensley’94,Baladi-Vallée’05...]



Formal power series
with coefficients in Fq



Formal power series

Let q be a power of a prime number p

We have the correspondence
Z ∼ Fq[X ]

Q ∼ Fq(X )

R ∼ Fq((X−1))

f = anX
n + an−1X

n−1 + · · · + a0 + a−1X
−1 + · · ·

Laurent formal power series



Formal power series

Let f ∈ Fq((X−1)) f 6= 0

f = anX
n + an−1X

n−1 + · · · an 6= 0

Degree deg f = n

Distance |f | = qdeg f

Ultrametric space

|f + g | ≤ max(|f |, |gl)

No carry propagation!



Generating functions

Ω = {(P ,Q) ∈ Fq[X ]2 : Q monic, P = 0 or deg P < deg Q}

Ωm = {(P ,Q) ∈ Ω : deg Q = m}

• Size of (P ,Q) := deg Q
• Generating function

TΩ(z) :=
∑
m≥0

|Ωm|zm =
∑

(P,Q)∈Ω

zdeg (Q)

• Fact
|Ωm| = q2m

TΩ(z) :=
∑
m≥0

|Ωm|zm =
1

1− q2z



A fundamental bijection

Euclid algorithm ; (P ,Q) is uniquely determined by

partial quotients (A1, · · · ,AL)+ gcd (monic)

deg (Q) =
∑

deg (Ai) + deg (gcd)

Ultrametricity!

G = {P ∈ Fq[X ] : deg P ≥ 1} partial quotients
U = {P ∈ Fq[X ] : P is monic} gcd

Fact Ω = Seq(G)× U

Seq(G):= finite sequences of elements of G

Ω = {(P ,Q) ∈ Fq[X ]2 : Q monic, P = 0 or deg P < deg Q}
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deg (Q) =
∑

deg (Ai) + deg (gcd)
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Generating functions
Ω = {(P ,Q) ∈ Fq[X ]2 : Q monic, P = 0 or deg P < deg Q}
Gm = {P ∈ Fq[X ] : deg P ≥ 1, deg (P) = m} quotients
Um = {P ∈ Fq[X ] : P is monic, deg (P) = m} gcd

• Generating function

U(z) :=
∑
m≥0

|Um|zm =
1

1− qz

G (z) :=
∑
m≥0

|Gm|zm = (q − 1)

(
1

1− qz
− 1
)

=
(q − 1)qz

1− qz

• Fact Ω = Seq(G)× U

; TΩ(z) =

(∑
k≥0

G k(z)

)
× U(z) =

1
1− G (z)

× U(z)

TΩ(z) =
∑ 1

1− q2z
, |Ωm| = q2m



Additive costs

Let c be a cost defined on the set G of quotients



Additive costs

Let c be a cost defined on the set G of quotients

Additive cost C on Ω

C (P ,Q) :=

L(P,Q)∑
i=1

c(Ai)

The Ai are the quotients

Example: C = 1 Number of steps

We introduce a further variable for the cost u



Additive costs

Let c be a cost defined on the set G of quotients

; generating functions with two variables



Additive costs

Let c be a cost defined on the set G of quotients

Sc(z , u) =
∑
P∈G

zdeg P ·uc(P) G = {P ∈ Fq[X ] : deg P ≥ 1}

Sc(z , u) =
∑
m,k

|{P ∈ G, deg P = m, c(P) = k}| zmuk

Tc(z , u) =
∑

(P,Q)∈Ω

zdeg Q · uC(P,Q)

TC (z , u) =
∑
m,k

|{(P ,Q) ∈ Ω, deg Q = m, C (P ,Q) = k}| zmuk



Additive costs

Let c be a cost defined on the set G of quotients

Sc(z , u) =
∑
P∈G

zdeg P · uc(P)

Tc(z , u) =
∑

(P,Q)∈Ω

zdeg Q · uC(P,Q)

Fact

TΩ(z) =
1

1− G (z)
· U(z)

TC (z , u) =
1

1− Sc(z , u)
· U(z)



An example of an additive cost

Ω = {(P ,Q) ∈ Fq[X ]2 : Q monic, P = 0, or deg P < deg Q}

G = {P ∈ Fq[X ] : deg P ≥ 1} U = {P ∈ Fq[X ] : P is monic}



An example of an additive cost

• c = 1, C= number of steps for Euclid algorithm

Sc(z , u) = u · G (z)

G (z) =
(q − 1)qz

1− qz
G = {P ∈ Fq[X ] : deg P ≥ 1}

TC (z , u) =
1

1− uG
· U(z)



How to get expectations?

Ω = {(P ,Q) ∈ Fq[X ]2 : Q monic, P = 0, or deg P < deg Q}

G = {P ∈ Fq[X ] : deg P ≥ 1} partial quotients

U = {P ∈ Fq[X ] : P is monic} gcd

TΩ(z) =
1

1− G (z)
· U(z), TC (z , u) =

1
1− Sc(z , u)

· U(z)

Sc(z , u) =
∑
m,k

|{P ∈ G, deg P = m, c(P) = k}| zmuk

TC (z , u) =
∑
m,k

|{(P ,Q) ∈ Ω, deg Q = m, C (P ,Q) = k}| zmuk



How to get expectations?

TΩ(z) =
1

1− G (z)
· U(z), TC (z , u) =

1
1− Sc(z , u)

· U(z)

Sc(z , u) =
∑
m,k

|{P ∈ G, deg P = m, c(P) = k}| zmuk

TC (z , u) =
∑
m,k

|{(P ,Q) ∈ Ω, deg Q = m, C (P ,Q) = k}| zmuk

By taking derivatives w.r.t. u

∂

∂u
TC |u=1 =

∑
m

k |{(P ,Q) ∈ Ω, deg Q = m,C (P ,Q) = k}|zm

Em[C ] =
[zm] ∂

∂u
TC (z , u)|u=1

q2m

;Expectation, variance, asymptotic Gaussian law



Number of steps

TL(z , u) =
1

1− uG
· U(z)

∂

∂u
TL|u=1 = G

(
1

1− G

)2

· U(z)

Expectation Em[L] =
[zm] ∂

∂u
TL(z , u)|u=1

q2m



Number of steps

TL(z , u) =
1

1− uG
· U(z)

∂

∂u
TL|u=1 = G

(
1

1− G

)2

· U(z)

Expectation Em[L] =
[zm] ∂

∂u
TL(z , u)|u=1

q2m

Looking for singularities

G (z) =
(q − 1)qz

1− qz
singularity 1/q(

1
1− G

)2

=
1− qz

1− q2z
singularity 1/q2

The smallest pole is 1/q2



Number of steps

TL(z , u) =
1

1− uG
· U(z)

∂

∂u
TL|u=1 = G

(
1

1− G

)2

· U(z)

Expectation Em[L] =
[zm] ∂

∂u
TL(z , u)|u=1

q2m linear in m

TΩ(z) =
1

1− G
· U(z) =

1
1− q2z

singularity 1/q2 ; q2m

(
1

1− G

)2

=
1− qz

1− q2z
singularity 1/q2 of order 2 ; mq2m



Costs for Euclid algorithm

Theorem [Vallée-Lhote]
L := number of steps

Em[L] =
q − 1
q
·m Vm[L] = ·q − 1

q2 ·m

Gaussian law
Theorem [B.-Nakada-Natsui-Vallée]
N := number of non-zero monomials

Em[N] = 2·q − 1
q
·m+O(1) Vm[N] = 2·q − 1

q2 ·m+O(1)

Gaussian law



Asymptotic Gaussian law

Let R be a cost defined on Ω

Pm

[
(P ,Q) ∈ Ωm,

R(P ,Q)− am√
bm

≤ y

]
=

1√
2π

∫ y

−∞
e−t

2/2dt+rm(y)

(rm)m is sequence of functions rm : R→ R, with

lim
m→∞

sup{rm(y) : y ∈ R} = 0

Em[R] ∼ am, Vm[R] ∼ bm.



Combinatorics is ubiquitous

An interplay between discrete and continuous structures

; Concrete mathematics: A Foundation for Computer
Science [Graham-Knuth-Patashnik]

A domain of inter/transdisciplinarity
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