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Abstract

Multiple context-free grammars (MCFGs) are a generalization of context-free gram-
mars that deals with tuples of strings. This is a brief survey of MCFGs, their proper-
ties, and their relations to other formalisms. We outline simple constructions to convert
MCFGs to Hyperedge Replacement Grammars (HRGs) and to Deterministic Tree Walk-
ing Transducers (DTWTs), and also to simulate DTWTs by MCFGs. We also describe a
simple way to recognize bounded split-width MNWs using MCFGs, which gives us another
way to prove MSO-decidability over bounded split-width MNWs.

1 Introduction

This is a report on an internship done with Paul Gastin, Aiswarya Cyriac and K Narayan
Kumar in the Laboratoire Spécification et Vérification (LSV) at the École normale supérieure
de Cachan (ENS Cachan) in the summer of 2013.

We studied the formalism known as Multiple Context Free Grammars (MCFGs), ini-
tially to see if there was any connection to the notion of split-width over Multiply Nested
Words (MNWs). It turned out that MCFGs are actually a robust formalism, with connec-
tions to many other types of grammars and machine models. We studied two equivalent
formalisms, namely Hyperedge Replacement Grammars (HRGs) and to Deterministic Tree
Walking Transducers (DTWTs). Although in the literature, the equivalence is proved in a
rather long-winded way through other formalisms, we found simple constructions to convert
MCFGs to HRGs and to DTWTs, and also back from DTWTs to MCFGs.

To answer our initial question, we discovered an easy way to describe bounded split-width
MNWs using MCFGs, which gives us another way to prove decidability of MSO. We also tried
to study some machine models for MCFGs, hoping that this would allow us to formulate a
restriction in a machine theoretic sense that captured bounded split-width, another important
open question in that area.

2 Multiple Context Free Grammars

MCFGs were proposed in 1991 by Seki, Matsumura, Fujii and Kasami [10], to describe the
syntax of natural languages. The class of languages generated by MCFGs properly includes
the class of context-free languages and is properly included in the class of context-sensitive
languages.

Unlike CFGs, while defining MCFGs we look at non-terminals as predicates and rewriting
rules as inference rules. Thus in a CFG, all non-terminals are predicates of arity 1. MCFGs
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generalize CFGs in the sense that they allow non-terminals to have arbitrary arity. Thus each
non-terminal derives not a string, but a tuple of strings.

For example, consider the MCFG with the following production rules:

S(xy)← A(x, y)

A(axb, cyd)← A(x, y)

A(ab, cd)

This generates the non-context-free language {anbnbndn|n ≥ 1}.

2.1 Motivation

It is widely known that CFGs are an inadequate formalism to describe the structures present
in natural language. For example, cross-serial dependencies in natural language, eg Swiss
German, cannot be captured by CFGs (for a nice example, see [8]). Aravind K. Joshi proposed
a formalism known as Mildly Context Sensitive Grammar formalism, hoping to find a class
of grammars that could capture natural language but still have tractable parsing properties.
The criteria he proposed are:

1. Properly extends CFGs,

2. Poly-time parsable,

3. Semilinear,

4. Exhibits limited cross serial dependencies.

MCFGs seemed to fit all the above criteria, and also turned out to be equivalent to a
large number of other MCSG formalisms, and thus a near-consensus emerged, identifying
MCSGs with MCFGs. But recently this consensus is being questioned, especially after a
recent result by Sylvain Salvati [7] that the language MIX, that was not supposed to be
mildly context-sensitive, could in fact be recognized by a 2-MCFG.

2.2 Definition

A m-MCFG(r) is a 4-tuple G = (N,T, P, S) such that:

• N is a finite ranked alphabet of non-terminals of maximum rank m. I.e., each non-
terminal is a k-ary predicate with k ≤ m.

• T is a finite alphabet of terminals.

• P is a set of rules of the form:

A0(s1, . . . , sk0)← A1(x
1
1, . . . , x

1
k1) · · ·An(xn1 , . . . , x

n
kn)

where

– Ai is a non-terminal of arity ki for every i, n ≤ r,
– the variables xij are pairwise distinct,

– the strings si are in (T ∪X)∗ with X = ∪i,jxij ,
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– each variable xij has at most one appearance in s1 · · · sk.

• S is a non-terminal of rank 1.

Given a rule such as the one above, we define the dimension to be the maximum arity of
the Ais, the rank to be n, and the degree to be the sum of the arities of Ais. The dimension,
rank and degree of the MCFG G is the maximum dimension, rank, degree (respectively) of
all its rules.

Derivations are defined in the natural way: for any rule without a RHS, the LHS is said to
be derivable; and for any rule, if all the predicates on the RHS are derivable for some tuples of
strings, then the LHS (with appropriate substitutions) is said to be derivable. The language
derived by a MCFG G is simply: L(G) = {w|S(w) is derivable}. A language that can be
recognized by a MCFG is called a Multiple Context Free Language (MCFL). A language
recognized by a MCFG of dimension q and rank r is a q-MCFL(r).

2.3 Types

Definition 2.1 An MCFG is called non-deleting if in every rule, every variable xij appears
exactly once in the LHS s1 · · · sk.

For example, the rule
A(xy)← B(x)C(y)

is non-deleting, whereas
A(ay)← B(x)C(y)

is not.

Definition 2.2 An MCFG is called non-permuting if in every rule, there does not exist i, j, l
such that i < j but xlj appears before xli in the string s1 · · · sk.

For example, the rule
A(zx, y)← B(x, y)C(z)

is non-permuting, whereas
A(zy, x)← B(x, y)C(z)

is not.

Theorem 2.3 (Kracht 2003) For every MCFG G there exists a non-permuting and non-
deleting MCFG G′ such that L(G) = L(G′).

Definition 2.4 An MCFG is called well-nested if it is non-deleting and non-permuting and
satisfies the following condition: for every rule, there does not exist l1, l2, i1, i2, j1, j2 such that
the variables xl1i1 , x

l2
j1
, xl1i2 , x

l2
i2

appear in that order in the string s1 · · · sk.

For example, the rule
A(x1, x2y1y2)← B(x1, x2)C(y1, y2)

is well nested, whereas
A(x1y1, x2y2)← B(x1, x2)C(y1, y2)
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is not.
Unlike with the previous two restrictions, well-nested MCFGs are strictly weaker than

general MCFGs. There are examples of languages in the literature that are shown to be
MCFLs, but not well-nested MCFLs (Engelfriet and Skyum 1976, Staudacher 1993, Michaelis
2005).

2.4 Properties

• CFL ( MCFL ( CSL (Context Sensitive Languages). Note that all are strict inclusions.

• MCFLs are semilinear.

• MCFLs are a full AFL: they are a class of languages closed under homomorphisms,
inverse homomorphisms, intersection with regular sets, union, and Kleene closure.

• MCFLs are not closed under intersection.

• Decidability:

– Emptiness (L(G) = ∅?) : O(|G|)-time decidable

– Recognition (w ∈ L(G)?) : poly-time decidable

– Inclusion (L(G1) ⊆ L(G2)?) : undecidable

• Pumping lemma for MCFLs:

Lemma 2.5

∀L ∈ q-MCFL ∃n ≥ 1 ∃z ∈ L, |z| ≥ n

∃ a partition z = u1v1w1s1 · · ·uqvqwqsquq+1,
∑

vjsj ≥ 1

∀i ≥ 0, zi = u1v
i
1w1s

i
1 · · ·uqviqwqsiquq+1 ∈ L.

Note that this is a weaker version than the normal pumping lemma we have for CFLs
for example, because of the ∃ symbol highlighted in red. There is a stronger version of
the pumping lemma with this particular ∃ replaced by a ∀, but that holds only for well
nested MCFLs.

• There is an infinite (strict) hierarchy on the dimension of MCFLs. That is, 1-MCFL (
= CFL) ( 2-MCFL ( · · · q-MCFL ( (q + 1)-MCFL · · · .

• There is also a strict infinite hierarchy on ranks for a fixed dimension q ≥ 2 (1-MCFL
is basically equal to CFLs, where we have a normal form that collapses the rank down
to 2). [6]

• If we do not fix the dimension, then the hierarchy on ranks collapses to the second level.
This is because of a trade-off theorem that says that q-MCFL(r) ⊆ (k+1)q-MCFL(r−k).
[6]
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2.5 Connections To Other Formalisms

I talked to Sylvain Salvati at Laboratoire Bordelais de Recherche en Informatique (LaBRI),
Université Bordeaux I, about MCFGs. He gave me many valuable references and tips. Ac-
cording to him, MCFLs are equivalent to a variety of class of languages, including:

1. String language of Hyperedge Replacement Grammars (HRGs)

2. Output of Deterministic Tree Walking Transducers (DTWTs)

3. Linear Context Free Rewriting Systems

4. Second order string Abstract Categorial Grammars

Of these equivalences, the relation to HRGs is particularly useful because graph languages
generated by HRGs have bounded tree width and so with a little work on that construction, we
see that even graph structures generated by MCFGs should have bounded tree width. This
in fact, gave us another way to prove decidable MSO for MNWs with bounded split-width,
as detailed below.

2.6 Expressing Bounded Split-Width Using MCFGs

We also found that with a suitable encoding, we could construct an MCFG that generated only
Multiply-Nested Words (MNWs) that had a split-width bounded by some k (for definitions
see [2]).

Let s be the total number of stacks under consideration. The encoding of MNWs as strings
is as follows: we denote every internal action by the terminal symbol a, and every push onto
a stack i is denoted by bi and every corresponding pop by di. Note that since within every
stack the MNW is well nested, it is easy to recover the information of which push corresponds
to which pop. To encode a m-split MNW (m-SMNW), we use an m-tuple of strings.

Now the non-terminals in our new MCFG consist of symbols Sm,f for every 1 ≤ m ≤ k
and where f is a collection of functions {fi : [m] × [m] → {0, 1}|1 ≤ i ≤ s}. Sm,f has arity
m and contains all tuples that are m-SMNWs and have split-width bounded by k, and who’s
nesting edges satisfy f . This means that in some valid Sm,f (x1, · · · , xm), fi(p, q) = 1 if and
only if there is a nesting edge between xp and xq. The production rules mirror the algebraic
definition of how k bounded split-width MNWs are built up in (as in [2]), and are as follows:

• S1,f (a) for the identically zero f .

• S2,f (bi, di) for the f in which all fjs are zero, except fi(1, 2) = 1.

• Sm+n,f (s1, · · · , sm+n)← Sm,g(x1, · · · , xm)Sn,h(y1, · · · , yn) where s1, · · · , sm+n is a per-
mutation of x1, · · · , xm, y1, · · · , yn, but we only allow permutations that preserve well-
nestednes, by the following constraint: there does not exist i, j, p1, p2, q1, q2 such that
gi(p1, q1) = 1 = hj(p2, q2) and xp1 , yp2 , xq1 , yq2 appear in that order in the string
s1 · · · sm+n. Also, we update f to have the new nested edge information as follows:
fi(p, q) = 1 if and only if sp = xp′ , sq = xq′ and gi(p

′, q′) = 1 (and symmetrically for y
and h). This emulates the shuffle operation.

• Sn,f (s1, · · · , sn) ← Sm,g(x1, · · · , xm) such that n < m and s1 · · · sn = x1 · · ·xm as
strings. Also, f is updated as follows: fi(p, q) = 1 if and only if sp contains xp′ , sq
contains xq′ and gi(p

′, q′) = 1. This emulates the merge operation.
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Although not a rigorous proof, since we followed the definition of split-width almost ex-
actly, it is easy to see that the tuples of strings generated using these non-terminals are exactly
the SMNWs of split-width bounded by k. Using the relation to HRGs explained below, we get
that hence MNWs with bounded split-width have bounded tree width, and hence decidable
MSO.

3 Hyperedge Replacement Grammars

HRGs are a generalization of graph grammars. They are also called Context-Free Hypergraph
Grammars. For a comprehensive survey see [3], or for a paper relating it to DTWTs see [4].

Definition 3.1 Let C be a finite alphabet such that each A ∈ C has a type(A) ∈ N. A
hypergraph over C is a tuple H = (V,E, lab, att, ext) such that:

• V and E are finite sets of nodes ad hyperedges respectively,

• lab is a labelling function from E → C,

• att is a function from E → V ∗ that denotes the nodes attached to each hyperedge,
complying with |att(e)| = type(lab(e)) for every e ∈ E,

• ext ∈ V ∗ specifies which nodes are external nodes.

When there are multiple hypergraphs in a certain context, we use a subscript to denote
which function (for example labH , attH , extH) we are referring to. We define the type of the
hypergraph to be type(H) = |extH |.

To define graph grammars, we first need to define the notion of hyperedge replacement.
Given a hyperedge e in a hypergraph H and another hypergraph H ′ such that typeH(e) =
type(H ′), the replacement of e in H by H ′ yields the hypergaph H[e/H ′] which is constructed
as follows:

• Build H − e by removing e from H.

• Take the disjoint union of H − e and H ′, renaming edges and nodes if necessary, and
let the external nodes be that of H.

• For all i ∈ [typeH(e)], identify the i-th external node of H ′ with the i-th attached node
of e.

Definition 3.2 A hyperedge replacement grammar (HRG) is a tuple G = (N,Σ, R, S), where

• N and Σ ⊆ C are finite sets of non-terminal and terminal symbols respectively,

• R is a set of rules of the form A → H with A ∈ N and H a hypergraph such that
type(A) = type(H),

• S ∈ N is the start non-terminal.
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Given a label of a hyperedge A ∈ C, we have the canonical hypergraph called the handle
denoted A•, which is a hypergraph H consisting of just a single hyperedge e labelled A, all
nodes are external nodes, and attH(e) = extH .

The derivation in a HRG starts with S•. If H is a hypergraph with e ∈ EH and labH(e)→
H ′ is a rule, then there is a derivation step H → H[e/H ′]. The generated language is
L(G) = {H|S• →∗ H}.

A string can be represented as a sequence of labelled edges in a directed path graph. Thus
it is easy to see that every context free string grammar can be viewed as a graph grammar.
But more importantly, graph grammars can be used as a type of string grammar by restricting
attention to those graph grammars that generate strings only. This is a-priori more powerful,
since sentential forms of such a grammar may be arbitrary graphs. It is also known that it is
decidable whether an arbitrary HRG generates a string language [1].

An important property of HRGs is that the graph languages generated by them have
bounded tree width [5].

3.1 Simulating MCFGs

It is quite easy to see that every MCFL can be recognized by a HRG. Given an MCFG
G = (N,T, P, S), we construct a HRG G′ = (N,Σ = T,R, S) with the same terminal and non-
terminal symbols (and the same start symbol). Every non-terminal in the HRG is simply a
non-terminal edge of type twice the arity of the corresponding non-terminal in the MCFG. For
a non-terminal of arity k, we denote the attachments of the hyperedge as 1, 1′, 2, 2′, . . . , k, k′.
The idea is that if A(w1, . . . , wk) is derivable in the MCFG, then starting from A•, one can
derive the string graphs for w1, . . . , wk such that w1 is contained between the nodes to which
1 and 1′ were attached to. Every rule in the MCFG that looks like:

A0(s1, . . . , sk0)← A1(x
1
1, . . . , x

1
k1) · · ·An(xn1 , . . . , x

n
kn)

is replaced by a rule A• → H in the HRG, where H is a hypergraph defined as follows:
For each si, there are |si| + 1 nodes in a “cluster”, connected by |Si| edges. If the jth

character in si is a terminal a ∈ T , then the jth edge is a simple edge of type 2 labelled a. If it
is xlm then the two nodes are attached to the hyperedge labelled Al, between the attachments
m and m′. The external nodes of H are the two nodes at the edge of each “cluster”.

As an example, consider the following MCFG that generates the language anbmanbm:

S(x1y1x2y2)← A(x1, x2)B(y1, y2)

A(ax1, ax2)← A(x1, x2)

B(ay1, ay2)← B(y1, y2)

A(a, a)

B(b, b)

Using the construction above, we get the following HRG (shown in Figure 1), where the
letters Y, y are used as a short way of expressing two similar rules for A, a and B, b respectively.
Each of the three rules shown below are derived from the corresponding rules in the MCFG
above, using the strategy outlined above.
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Figure 1: A HRG for the MCFG generating anbmanbm
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4 Deterministic Tree Walking Transducers

A deterministic tree-walking transducer is an automaton with a finite control, an input tree,
and an output tape. See [4] for a definition, and for the equivalence to HRGs.

Definition 4.1 A deterministic tree-walking transducer (DTWT) is a tuple M = (Q,G,∆, δ, q0, F ),
where

• Q is a finite set of states, with q0 ∈ Q the initial state and F ⊆ Q the set of final states,

• G = (VN , VT , P, SG) a context-free grammar without ε-productions,

• ∆ is the output alphabet,

• δ : Q × (VN ∪ VT ) → Q × D × ∆∗ is the transition function with D = {stay, up} ∪
{down(k)|k ∈ N, k ≥ 1}.

A configuration of M is a tuple (q, t, n, w), where q ∈ Q, t is a complete derivation tree of
G, n is either a node of t or n =“father of the root”, and w ∈ D∗. Here, “father of the root”
just denotes a special object that is not a node of t. If n is a node of t,X is the label of n, and
δ(q,X) = (q′, d, y), then M moves in one step from configuration (q, t, n, w) to configuration
(q′, t, n′, wy), where n′ = n in case d = stay, n′ is the father of n in case d =up (in particular,
if n is the root of t, then n′ = “father of the root”), and n′ is the kth son of n (if it exists)
in case d = down(k). A computation of M consists of a sequence of such moves, starting in
an initial configuration; it is successful if it ends in a final configuration. For a given input
tree t, the initial configuration is (qo, t, r, ε) where r is the root of t. A final configuration is
any configuration (q, t,“father of the root”, w) with q ∈ F ; it is said to have output w. For
a complete derivation tree t we define M(t) to be the output of the final configuration of
M , which it reaches in the computation that starts in the initial configuration for t. Since
the computation of M may not end in a final configuration, M(t) may be undefined. The
output language of M (or the language generated by M), denoted OUT(M), is OUT(M) =
{w ∈ A∗|w = M(t) for some complete derivation tree t of G}.

By OUT(DTWT) we denote the class of all output languages of DTWTs. A result of
Engelfriet and Heyker (1991) shows that this class of languages is exactly the class of string
languages generated by HRGs [4].

We found two simple constructions, described below, that show the equivalence between
MCFGs and DTWTs.

4.1 Simulating MCFGs

We assume first that the given MCFG is in a normal form such that there is only one ap-
pearance of each non-terminal in the RHS of every rule. This can be easily done by having
multiple copies of non-terminals that appear more than once in the RHS of a rule.

The idea is that the DTWT we construct walks on the derivation tree of some derivation
from the MCFG, and tries to output the word generated in a linear order. The complication
arises because in an MCFG, the word is generated in not necessarily a linear order, because
of the power of deriving tuples. But since we have the normal form above, it is enough for
our machine to only remember which argument of which nonterminal it is currently looking
for, and what position of that argument it is in.
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Given an MCFGG = (N,Σ, P, S), we construct a DTWT on the CFGG′ = (VN , VT , P
′, Sin)

where

VT = {π ∈ P |RHS(π) = ∅}
VN = P \ VT
P = {π → π1 · · ·πk|π : A← A1 · · ·Ak, and for every 1 ≤ i ≤ k,LHS(πi) = Ai}
Sin = {π ∈ P |LHS(π) = S}

The DTWT we define is M = (Q,G′,Σ, δ, q0, F ), where

Q ={(arg, pos)|1 ≤ arg ≤ dimension of G, 0 ≤ pos ≤ max length of rule in G as string}
∪ {find(A, arg)|A ∈ N, 1 ≤ arg ≤ dimension of G}

and the transition function δ is defined as follows

• ((arg, pos), π) 7→ ((arg, pos+1), stay, a) if π : A0(s1, . . . , sk0)← A1(x
1
1, . . . , x

1
k1

) · · ·An(xn1 , . . . , x
n
kn

)
and the pos-th character of sarg is a ∈ Σ.

• ((arg, pos), π) 7→ ((arg′, 0), down(k), ε) if π is as above and the pos-th character of sarg
is xkarg′ .

• ((arg, pos), π) 7→ (find(A, arg), up, ε) if π is as above, and pos is equal to the length of
the string s1 · · · sk.

• (find(A, arg), ε) 7→ ((arg′, pos), stay, ε) where if π is as above, and A is the k-th non-
terminal in the RHS, then the variable xkarg is the (pos− 1)-th character in sarg′ .

The DTWT starts at the root of the derivation tree at the state (1, 0), and finishes at the
father of the root, with state find(S, arity(S)).

4.2 Simulating DTWTs

We are given a DTWT: M = (Q,G,∆, δ, q0, F ). We take every derivation tree of G on which
M has a valid run and basically add the run information to the labels of the tree. We do this
as follows: for every node labelled L, we add on a sequence of tuples from (Q × D) where
D = {stay, up} ∪ {down(k)|k ∈ N, k ≥ 1}. There is one tuple for each time a node is visited,
and it stores the state when the run entered the node, and the direction M moved in. Note
that since M is deterministic, the size of this sequence is bounded by the number of states,
|Q|, for if the machine ever enters the same node of the tree at the same state more than once,
there will be an infinite loop and it cannot possibly have a valid run on this tree. Also the
set D is finite since the k in down(k) is bounded by size of rules in G. So the total number
of new labels is finite.

Our MCFG now has non-terminals of the form Lα, where L is the label of the node and
α is the sequence containing the run information. The terminals are the output alphabet
∆. The arity of a non-terminal Lα is equal to the number of times the subtree rooted at L
was visited, and the intuition is that each argument ultimately holds the word output by M
during that visit. The rules of the MCFG are built as follows:

Lα(s1, . . . , sk0)← L1
α1

(x11, . . . , x
1
k1) · · ·Lnαn

(xn1 , . . . , x
n
kn)
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only if there is some derivation tree of G in which there is a node labelled L with children
L1, . . . , Ln, and the labels α1, . . . , αk are compatible with α in the natural sense that they
combine to give a valid run of M . The strings si are built also according to the runs: si is
the word output by M in the i-th visit to this subtree, so if M outputs a terminal a, si will
contain a, and whenever M visits the j-th child of L, then si contains the variable xjl (if this
is the l-th time Lj is visited) which will eventually contain the word output by M on that
visit of Lj .

We then create a distinct start non-terminal S and create rules to all to all labels of roots
of derivation trees with valid runs like:

S(x1 · · ·xk)← Lα(x1, . . . , xk)

What we have done is basically make the MCFG create derivation trees of G with addi-
tional run information to make sure that M has a valid accepting run on it. We use the power
of MCFGs of keeping a tuple of strings at each non-terminal to keep track of M ’s output, for
M ’s run could be more complicated than a simple top-down run.

5 Hunt for Machine Models

We were also interested in looking for machine models for recognizing MCFLs, mainly because
if there was a “nice” model, then this may give us a machine characterization for bounded split-
width MNWs, which is an important open question. We were told of some possible already
existing machine models that can recognize (possibly more than) MCFLs: Thread Automata,
Krivine Machines and Collapsible Pushdown Automata. Of these, we only managed to have
time to investigate Thread Automata, the other two (see [9]) we did not have time to read
about.

5.1 Thread Automata

Thread Automata were introduced by Villemonte de la Clergerie in 2002 [11] to describe a
wide range of parsing strategies for many Mildly Context Sensitive Formalisms. However, we
soon discovered that Thread Automata were Turing powerful and this put a stop to this line
of enquiry.
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