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An ’Imperfect’ Scenario
The Story

Suppose a teacher gives as homework the following problems

1 α ∨ γ
2 β ∨ γ

The next day a student is asked one of these questions. For some
reason the student only hears ”.... ∨γ”. How should the student
answer knowing that the teacher is asking one of the homework
problems?

How do we model this?
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An ’Imperfect’ Scenario
Model of the story

T

S

P

T

F

F

α ∨ γ

S

P

T

F

F

β ∨ γ

5 / 62



Extensive Form Games
Definitions

A finite Extensive Form Game among ’[n]’ players is described by

G := (T , turn, (Ii )i∈[n], (�i )i∈[n])

where

◦ T is a rooted action-labelled finite tree given by (v0,V,E,l),
l : E → A labels edges with actions from A

◦ turn : V → [n] gives the ownership of the nodes of the tree

◦ Ii , the information partition of player i is a partiton of
{v ∈ V |turn(v) = i}

◦ �i gives preferences of player i over maximal paths(or plays) of T .
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Extensive Form Games
Definitions

• A strategy σi : Ii → A for player i is a function that assigns
an action to every information set Ii ∈ Ii .
A strategy profile (σi )i∈[n] is a tuple of strategies, one for
each player.

• A play v0a0v1a1...an−1vn is consistent with strategy σi , if
for every vi with turn(vi ) = i σi (Ii ) = ai where Ii in the
unique partition containing vi .
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Extensive Form Games
About preferred plays

• A strategy(σdomi ) for player i is a dominant strategy if

∀σi ∈ Σi , ∀σ−i ∈ Σ−i , (σdomi ,σ−i) �i (σi , σ−i).

• If the preference relation is binary or win-loss, then dominant
strategy is called winning strategy.

• A team or coalition of players(S ⊂ [n]) is said to have a
dominant strategy if there exists a strategy σdomi for each
player i ∈ S such that
∀(σi )i∈S ∈ (Σi )i∈S ,
∀(σi )i∈[n]\S ∈ (Σ−i )i∈[n]\S ,

((σdomi )i∈S , (σi)i∈[n]\S) �S ((σi)i∈S , (σi)i∈[n]\S).
Note that here we assume all players in the coalition have the
same preference relation over plays .
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Extensive Form Games
Questions of interest

• Does there exist a dominant strategy for player i?

• Does there exist a coordinated winning strategy for a
coalition?
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Extensive Form Games
Perfect Recall

In this talk we are interested in determining the existense of
coordinated winning strategy for a restricted class of games,
namely games of perfect recall.
Let Xi (v) denote the sequence of information sets of player i that
are encountered on the path from v0 to v .
A game is said to have perfect recall if for each player i ,
Xi (v)=Xi (v

′) whenever {v , v ′} ⊆ Ii for some Ii ∈ Ii .
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Extensive Form Games
Perfect recall

Example of imperfect recall
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Extensive Form Games
Perfect information

A game is said to have perfect information if for every player i ,
∀Ii ∈ Ii it holds that |Ii | = 1.
Perfect information games are ’easy’. Why?
Because winning strategies of subgames can be composed to give
winning strategy of the constituent game.
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Extensive Form Games
Imperfect information games

Imperfect information games are ’hard’ because of the lack of
compositionality.
Example
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Extensive Form Games
Infinite games

Infinite games via a finite representation.
Game graph

A:= (V ,A, δ, (βi )i∈[n], turn, v0)

where

• V is a finite set of graph nodes and A denotes the actions
available to players.

• δ : V × A→ V is the transition function on V .

• βi : V → Bi gives the observables for player i at each state
in V where Bi is the set of observables for player i ∈ [n].

Additionally we assume that the structure of the arena is common
knowledge to all players and that the turn functions are ’layered’.

18 / 62



Extensive Form Games
Infinite games

Infinite games via a finite representation.
Game graph

A:= (V ,A, δ, (βi )i∈[n], turn, v0)

where

• V is a finite set of graph nodes and A denotes the actions
available to players.

• δ : V × A→ V is the transition function on V .

• βi : V → Bi gives the observables for player i at each state
in V where Bi is the set of observables for player i ∈ [n].

Additionally we assume that the structure of the arena is common
knowledge to all players and that the turn functions are ’layered’.

19 / 62



Extensive Form Games
Example

Figure : ? Borrowed from [1]
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Extensive Form Games
Game graph to infinite game

A → G

• Game tree is given by the finite plays on the game graph.

• For every play π := v0a0v1a1..., we define an i-projection of a
play π as follows βi (π) := βi (v0, a0)βi (v1, a1)... where

βi (vi , ai ) :=
βi (vi )ai if turn(vi ) = i
βi (vi )� otherwise.

This also gives us an equivalence relation on finite/infinite
plays given by π1 ∼i π2 iff βi (π1) = βi (π2). We’ll call this the
uncertainty relation.

• Information Partition of player i i.e Ii is given by equivalence
classes of ∼i over finite plays.
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Extensive Form Games
Example

Figure : ? Borrowed from [1]
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Extensive Form Games
Winning conditions of infinite games

Winning conditions i.e ’win-loss’ preference relation on plays for
the team/coalition is given by W ⊆ Plays(A).
We choose the following finite representatiion of winning
conditions via γ : V → N.

W := {π ∈ Plays(A)| lim inf
i→∞

γ(vi )isodd}

We additionally impose the restriction that the winning condition
respects observational equivalence i.e
∀π1 ∈W , if for some π ∈ Plays(A), i ∈ [n] s.t βi (π1) = βi (π),
then π ∈W .
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Extensive Form Games
Why perfect information games are ’easy’.

• Compositionality of strategies.

• Analysis upto a certain finite level is enough.
Memoryless determinacy of parity and mean payoff
games: a simple proof:Henrik Bjorklund, Sven Sandberg,
Sergei G. Vorobyov.
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Extensive Form Games
Imperfect information games are hard

Existence of a winning strategy for a coalition is ’hard’.

• Peterson-Reif

• Pnueli-Rosner

• Berwanger-Kaiser

26 / 62



Extensive Form Games
Why imperfect information games are hard

• Ever growing information sets.
Not Really
Since the number of states of the game graph are finite and
states are all that determine future possible plays, any
equivalence class can be ’shrunk’ upto uniqueness.
But then they are easy.
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Extensive Form Games
Why are imperfect information games hard(The real reason)

• Ever growing Knowledge Hierarchies.

Figure : ? Borrowed from [1]
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Tractable Classes of Imperfect Games
Investigation

Figure : ? Borrowed from [1]
32 / 62



Tractable Classes of Imperfect Games
Possible tweaks

• Limiting Information Sets for players - (A local property)
’Recurring certainty’ for players.

• Limiting Knowledge Hierarchies - (A ’locally global’ property)
’Hierarchic Knowledge’ for the system. Studied since
Peterson-Reif.
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Tractable Classes of Imperfect Games
Possible tweaks

Two questions about the classes:

• Given a game graph A, can we determine whether G satisfies
the above properties.

• Given that A satisfies the condition, can the coordinated
winning strategy be determined.
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Recurrent certainty
Definitions

• An information set Ii ∈ Ii for player i is called certain for
player i if every π1, π2 ∈ Ii ,
βi (π1) = βi (π2)⇒ last(π1) = last(π2) where last(π) gives
the position where the finite play π ends.

• We say that a play is recurrently certain for player i if there
are infinitely many information sets of player i along the play
which are certain.
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Recurrent certainty
Epistemic Models

• An epistemic model over an arena A is a kripke structure
K = (K , (∼i )i∈[n]) where K ⊆ Plays(A) and (∼i )i∈[n] is the
uncertainty relation restricted to plays in K .
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Recurrent certainty
Testing Recurrent certainty

Theorem

Given a game graph A, there is a decidable procedure to test
whether recurrent certainty for player i is guaranteed along every
play.

Why it works:

• Effective representation of information sets via i-projection of
plays.

• Finite witness in plays for uncertain sets.

Corollary

Recurrent certainty implies periodic certainty.
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Recurrent certainty
Determining winning strategy

Theorem

If given a game graph A with the guarantee of recurrent certainty
for every play, then ”existense of a winning strategy inA for a
coaltion” is a decidable.

Why it works:

• From the corollary in the last section, there is a finite period
in the order of the size of the graph within which every player
is guaranteed to be certain atleast once. This is enough to
prove that the knowledge hierarchies are bounded.

• Reduction to perfect information game with exponential
blow-up.
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Recurrent Hierarchicity
Definitions

• An epistemic model K is said to be (i1, .., in)-hierarchic if it
holds in K that ∼i1⊆∼i2 ... ⊆∼in where (i1, .., in) is some
permutation of [n]. Therefore a sufficient condition for an
epistemic model not to be hierarchic for (i1, .., in) is the
existence of π1, π2 ∈ K such that for some im, in ∈ [n] with ,
βi (π1) = βi (π2)⇒ last(π) = last(π1)

• We say that a play is recurrently hierarchic if there are
infinitely many epistemic models along the play which are
hierarchic.
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Recurrent Hierarchicity
Testing Recurrent Hierarchicity

Theorem

Given a game graph A, there is a decidable procedure to test
whether recurrent hierarchicity is guaranteed along every play.

Why it works:

• Effective representation of epistemic models? We do this by
adding a new player who is as uncertain as any player.

• Finite witness in plays for un-hierarchic epistemic models.

Corollary

Recurrent hierarchicity implies periodic hierarchicity.
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Recurrent Hierarchicity
Determining winning strategy

Theorem

If given a game graph A with the guarantee of recurrent
hierarchicity, then ”existense of a winning strategy in A for a
coalition” is a decidable.

Why it works:

• We have some notion of homomorphism between epistemic
models that preserves ”strategic properties”. Additionally for
hierarchic epistemic models there is a homomorphically
equivalent epistemic model that is bounded in the size of the
graph game.

• Reduction to perfect information game with non-elementary
blow-up.
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Conclusion
Summary

• Why imperfect information games are hard.

• Limiting knowledge hierarchies is the way to go.

• Following this approach to the problem we have two tractable
classes:

◦ ’Recurrent certainity’.
◦ ’Recurrent hierarchicity’
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Conclusion
Critique

• Observable winning conditions.

• Perfect Recall in a distributed setting.

• In ”every” known tractable class, the proof via reduction to
perfect information games.
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Conclusion
Future work

• Public announcement makes determining N.E easy.
Why?

• What are the ”strategic properties” preserved by this
approach?

• More natural winning conditions.
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Questions/Suggestions/Critique

Thank You.
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